LinuxKPI workqueue cleanup.

This change makes the workqueue implementation behave more like in
Linux, both functionality wise and structure wise.

All workqueue code has been moved to linux_work.c

Add an atomic based statemachine to the work_struct to ensure proper
operation. Prior to this change struct_work was directly mapped to a
FreeBSD task. When a taskqueue has multiple threads the same task may
end up being executed on more than one worker thread simultaneously.
This might cause problems with code coming from Linux, which expects
serial behaviour, similar to Linux tasklets.

Move all global workqueue function names into the linux_xxx domain to
avoid symbol name clashes in the future.

Implement a few more workqueue related functions and macros.

Create two multithreaded taskqueues for the LinuxKPI during module
load, one for time-consuming callbacks and one for non-time consuming
callbacks.

MFC after:		1 week
Sponsored by:		Mellanox Technologies
This commit is contained in:
Hans Petter Selasky 2017-03-07 12:09:14 +00:00
parent a81683c371
commit ca2ad6bd77
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=314843
5 changed files with 707 additions and 176 deletions

View File

@ -2,7 +2,7 @@
* Copyright (c) 2010 Isilon Systems, Inc.
* Copyright (c) 2010 iX Systems, Inc.
* Copyright (c) 2010 Panasas, Inc.
* Copyright (c) 2013-2015 Mellanox Technologies, Ltd.
* Copyright (c) 2013-2017 Mellanox Technologies, Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -38,179 +38,189 @@
#include <asm/atomic.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/taskqueue.h>
#include <sys/mutex.h>
#define WORK_CPU_UNBOUND MAXCPU
#define WQ_UNBOUND (1 << 0)
#define WQ_HIGHPRI (1 << 1)
struct work_struct;
typedef void (*work_func_t)(struct work_struct *);
struct work_exec {
TAILQ_ENTRY(work_exec) entry;
struct work_struct *target;
};
struct workqueue_struct {
struct taskqueue *taskqueue;
atomic_t draining;
struct taskqueue *taskqueue;
struct mtx exec_mtx;
TAILQ_HEAD(, work_exec) exec_head;
atomic_t draining;
};
#define WQ_EXEC_LOCK(wq) mtx_lock(&(wq)->exec_mtx)
#define WQ_EXEC_UNLOCK(wq) mtx_unlock(&(wq)->exec_mtx)
struct work_struct {
struct task work_task;
struct taskqueue *taskqueue;
void (*fn)(struct work_struct *);
struct task work_task;
struct workqueue_struct *work_queue;
work_func_t func;
atomic_t state;
};
typedef __typeof(((struct work_struct *)0)->fn) work_func_t;
#define DECLARE_WORK(name, fn) \
struct work_struct name = { .func = (fn) }
struct delayed_work {
struct work_struct work;
struct callout timer;
struct work_struct work;
struct {
struct callout callout;
struct mtx mtx;
int expires;
} timer;
};
extern void linux_work_fn(void *, int);
extern void linux_flush_fn(void *, int);
extern void linux_delayed_work_fn(void *);
extern struct workqueue_struct *linux_create_workqueue_common(const char *, int);
extern void destroy_workqueue(struct workqueue_struct *);
#define DECLARE_DELAYED_WORK(name, fn) \
struct delayed_work name; \
static void name##_init(void *arg) \
{ \
linux_init_delayed_work(&name, fn); \
} \
SYSINIT(name, SI_SUB_LOCK, SI_ORDER_SECOND, name##_init, NULL)
static inline struct delayed_work *
to_delayed_work(struct work_struct *work)
{
return container_of(work, struct delayed_work, work);
return (container_of(work, struct delayed_work, work));
}
#define INIT_WORK(work, func) \
#define INIT_WORK(work, fn) \
do { \
(work)->fn = (func); \
(work)->taskqueue = NULL; \
TASK_INIT(&(work)->work_task, 0, linux_work_fn, (work)); \
(work)->func = (fn); \
(work)->work_queue = NULL; \
atomic_set(&(work)->state, 0); \
TASK_INIT(&(work)->work_task, 0, linux_work_fn, (work)); \
} while (0)
#define INIT_DELAYED_WORK(_work, func) \
do { \
INIT_WORK(&(_work)->work, func); \
callout_init(&(_work)->timer, 1); \
} while (0)
#define INIT_WORK_ONSTACK(work, fn) \
INIT_WORK(work, fn)
#define INIT_DEFERRABLE_WORK(...) INIT_DELAYED_WORK(__VA_ARGS__)
#define INIT_DELAYED_WORK(dwork, fn) \
linux_init_delayed_work(dwork, fn)
#define schedule_work(work) \
do { \
(work)->taskqueue = taskqueue_thread; \
taskqueue_enqueue(taskqueue_thread, &(work)->work_task); \
} while (0)
#define INIT_DEFERRABLE_WORK(dwork, fn) \
INIT_DELAYED_WORK(dwork, fn)
#define flush_scheduled_work() flush_taskqueue(taskqueue_thread)
#define flush_scheduled_work() \
taskqueue_drain_all(system_wq->taskqueue)
static inline int
queue_work(struct workqueue_struct *wq, struct work_struct *work)
{
work->taskqueue = wq->taskqueue;
/* Check for draining */
if (atomic_read(&wq->draining) != 0)
return (!work->work_task.ta_pending);
/* Return opposite value to align with Linux logic */
return (!taskqueue_enqueue(wq->taskqueue, &work->work_task));
}
#define queue_work(wq, work) \
linux_queue_work_on(WORK_CPU_UNBOUND, wq, work)
static inline int
queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *work,
unsigned long delay)
{
int pending;
#define schedule_work(work) \
linux_queue_work_on(WORK_CPU_UNBOUND, system_wq, work)
work->work.taskqueue = wq->taskqueue;
if (atomic_read(&wq->draining) != 0) {
pending = work->work.work_task.ta_pending;
} else if (delay != 0) {
pending = work->work.work_task.ta_pending;
callout_reset(&work->timer, delay, linux_delayed_work_fn, work);
} else {
callout_stop(&work->timer);
pending = taskqueue_enqueue(work->work.taskqueue,
&work->work.work_task);
}
return (!pending);
}
#define queue_delayed_work(wq, dwork, delay) \
linux_queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay)
static inline bool
schedule_delayed_work(struct delayed_work *dwork,
unsigned long delay)
{
struct workqueue_struct wq;
#define schedule_delayed_work_on(cpu, dwork, delay) \
linux_queue_delayed_work_on(cpu, system_wq, dwork, delay)
wq.taskqueue = taskqueue_thread;
atomic_set(&wq.draining, 0);
return (queue_delayed_work(&wq, dwork, delay));
}
#define queue_work_on(cpu, wq, work) \
linux_queue_work_on(cpu, wq, work)
#define create_singlethread_workqueue(name) \
#define schedule_delayed_work(dwork, delay) \
linux_queue_delayed_work_on(WORK_CPU_UNBOUND, system_wq, dwork, delay)
#define queue_delayed_work_on(cpu, wq, dwork, delay) \
linux_queue_delayed_work_on(cpu, wq, dwork, delay)
#define create_singlethread_workqueue(name) \
linux_create_workqueue_common(name, 1)
#define create_workqueue(name) \
linux_create_workqueue_common(name, MAXCPU)
#define create_workqueue(name) \
linux_create_workqueue_common(name, mp_ncpus)
#define alloc_ordered_workqueue(name, flags) \
#define alloc_ordered_workqueue(name, flags) \
linux_create_workqueue_common(name, 1)
#define alloc_workqueue(name, flags, max_active) \
#define alloc_workqueue(name, flags, max_active) \
linux_create_workqueue_common(name, max_active)
#define flush_workqueue(wq) flush_taskqueue((wq)->taskqueue)
#define flush_workqueue(wq) \
taskqueue_drain_all((wq)->taskqueue)
static inline void
flush_taskqueue(struct taskqueue *tq)
{
struct task flushtask;
#define drain_workqueue(wq) do { \
atomic_inc(&(wq)->draining); \
taskqueue_drain_all((wq)->taskqueue); \
atomic_dec(&(wq)->draining); \
} while (0)
PHOLD(curproc);
TASK_INIT(&flushtask, 0, linux_flush_fn, NULL);
taskqueue_enqueue(tq, &flushtask);
taskqueue_drain(tq, &flushtask);
PRELE(curproc);
}
#define mod_delayed_work(wq, dwork, delay) ({ \
bool __retval; \
__retval = linux_cancel_delayed_work(dwork); \
linux_queue_delayed_work_on(WORK_CPU_UNBOUND, \
wq, dwork, delay); \
__retval; \
})
static inline void
drain_workqueue(struct workqueue_struct *wq)
{
atomic_inc(&wq->draining);
flush_taskqueue(wq->taskqueue);
atomic_dec(&wq->draining);
}
#define delayed_work_pending(dwork) \
linux_work_pending(&(dwork)->work)
static inline int
cancel_work_sync(struct work_struct *work)
{
if (work->taskqueue &&
taskqueue_cancel(work->taskqueue, &work->work_task, NULL))
taskqueue_drain(work->taskqueue, &work->work_task);
return 0;
}
#define cancel_delayed_work(dwork) \
linux_cancel_delayed_work(dwork)
/*
* This may leave work running on another CPU as it does on Linux.
*/
static inline int
cancel_delayed_work(struct delayed_work *work)
{
#define cancel_work_sync(work) \
linux_cancel_work_sync(work)
callout_stop(&work->timer);
if (work->work.taskqueue)
return (taskqueue_cancel(work->work.taskqueue,
&work->work.work_task, NULL) == 0);
return 0;
}
#define cancel_delayed_work_sync(dwork) \
linux_cancel_delayed_work_sync(dwork)
static inline int
cancel_delayed_work_sync(struct delayed_work *work)
{
#define flush_work(work) \
linux_flush_work(work)
callout_drain(&work->timer);
if (work->work.taskqueue &&
taskqueue_cancel(work->work.taskqueue, &work->work.work_task, NULL))
taskqueue_drain(work->work.taskqueue, &work->work.work_task);
return 0;
}
#define flush_delayed_work(dwork) \
linux_flush_delayed_work(dwork)
static inline bool
mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
unsigned long delay)
{
cancel_delayed_work(dwork);
queue_delayed_work(wq, dwork, delay);
return false;
}
#define work_pending(work) \
linux_work_pending(work)
#endif /* _LINUX_WORKQUEUE_H_ */
#define work_busy(work) \
linux_work_busy(work)
#define destroy_work_on_stack(work) \
do { } while (0)
#define destroy_delayed_work_on_stack(dwork) \
do { } while (0)
#define destroy_workqueue(wq) \
linux_destroy_workqueue(wq)
/* prototypes */
extern struct workqueue_struct *system_wq;
extern struct workqueue_struct *system_long_wq;
extern struct workqueue_struct *system_unbound_wq;
extern struct workqueue_struct *system_power_efficient_wq;
extern void linux_init_delayed_work(struct delayed_work *, work_func_t);
extern void linux_work_fn(void *, int);
extern struct workqueue_struct *linux_create_workqueue_common(const char *, int);
extern void linux_destroy_workqueue(struct workqueue_struct *);
extern bool linux_queue_work_on(int cpu, struct workqueue_struct *, struct work_struct *);
extern bool linux_queue_delayed_work_on(int cpu, struct workqueue_struct *,
struct delayed_work *, unsigned delay);
extern bool linux_cancel_delayed_work(struct delayed_work *);
extern bool linux_cancel_work_sync(struct work_struct *);
extern bool linux_cancel_delayed_work_sync(struct delayed_work *);
extern bool linux_flush_work(struct work_struct *);
extern bool linux_flush_delayed_work(struct delayed_work *);
extern bool linux_work_pending(struct work_struct *);
extern bool linux_work_busy(struct work_struct *);
#endif /* _LINUX_WORKQUEUE_H_ */

View File

@ -68,7 +68,6 @@ __FBSDID("$FreeBSD$");
#include <linux/vmalloc.h>
#include <linux/netdevice.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/uaccess.h>
#include <linux/kernel.h>
@ -1164,50 +1163,6 @@ linux_completion_done(struct completion *c)
return (isdone);
}
void
linux_delayed_work_fn(void *arg)
{
struct delayed_work *work;
work = arg;
taskqueue_enqueue(work->work.taskqueue, &work->work.work_task);
}
void
linux_work_fn(void *context, int pending)
{
struct work_struct *work;
work = context;
work->fn(work);
}
void
linux_flush_fn(void *context, int pending)
{
}
struct workqueue_struct *
linux_create_workqueue_common(const char *name, int cpus)
{
struct workqueue_struct *wq;
wq = kmalloc(sizeof(*wq), M_WAITOK);
wq->taskqueue = taskqueue_create(name, M_WAITOK,
taskqueue_thread_enqueue, &wq->taskqueue);
atomic_set(&wq->draining, 0);
taskqueue_start_threads(&wq->taskqueue, cpus, PWAIT, "%s", name);
return (wq);
}
void
destroy_workqueue(struct workqueue_struct *wq)
{
taskqueue_free(wq->taskqueue);
kfree(wq);
}
static void
linux_cdev_release(struct kobject *kobj)
{

View File

@ -0,0 +1,563 @@
/*-
* Copyright (c) 2017 Hans Petter Selasky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <linux/workqueue.h>
#include <linux/wait.h>
#include <linux/compat.h>
#include <linux/spinlock.h>
#include <sys/kernel.h>
/*
* Define all work struct states
*/
enum {
WORK_ST_IDLE, /* idle - not started */
WORK_ST_TIMER, /* timer is being started */
WORK_ST_TASK, /* taskqueue is being queued */
WORK_ST_EXEC, /* callback is being called */
WORK_ST_CANCEL, /* cancel is being requested */
WORK_ST_MAX,
};
/*
* Define global workqueues
*/
static struct workqueue_struct *linux_system_short_wq;
static struct workqueue_struct *linux_system_long_wq;
struct workqueue_struct *system_wq;
struct workqueue_struct *system_long_wq;
struct workqueue_struct *system_unbound_wq;
struct workqueue_struct *system_power_efficient_wq;
static void linux_delayed_work_timer_fn(void *);
/*
* This function atomically updates the work state and returns the
* previous state at the time of update.
*/
static const uint8_t
linux_update_state(atomic_t *v, const uint8_t *pstate)
{
int c, old;
c = v->counter;
while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
c = old;
return (c);
}
/*
* A LinuxKPI task is allowed to free itself inside the callback function
* and cannot safely be referred after the callback function has
* completed. This function gives the linux_work_fn() function a hint,
* that the task is not going away and can have its state checked
* again. Without this extra hint LinuxKPI tasks cannot be serialized
* accross multiple worker threads.
*/
static const bool
linux_work_exec_unblock(struct work_struct *work)
{
struct workqueue_struct *wq;
struct work_exec *exec;
bool retval = 0;
wq = work->work_queue;
if (unlikely(wq == NULL))
goto done;
WQ_EXEC_LOCK(wq);
TAILQ_FOREACH(exec, &wq->exec_head, entry) {
if (exec->target == work) {
exec->target = NULL;
retval = 1;
break;
}
}
WQ_EXEC_UNLOCK(wq);
done:
return (retval);
}
static void
linux_delayed_work_enqueue(struct delayed_work *dwork)
{
struct taskqueue *tq;
tq = dwork->work.work_queue->taskqueue;
taskqueue_enqueue(tq, &dwork->work.work_task);
}
/*
* This function queues the given work structure on the given
* workqueue. It returns non-zero if the work was successfully
* [re-]queued. Else the work is already pending for completion.
*/
bool
linux_queue_work_on(int cpu __unused, struct workqueue_struct *wq,
struct work_struct *work)
{
static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
[WORK_ST_IDLE] = WORK_ST_TASK, /* start queuing task */
[WORK_ST_TIMER] = WORK_ST_TIMER, /* NOP */
[WORK_ST_TASK] = WORK_ST_TASK, /* NOP */
[WORK_ST_EXEC] = WORK_ST_TASK, /* queue task another time */
[WORK_ST_CANCEL] = WORK_ST_TASK, /* start queuing task again */
};
if (atomic_read(&wq->draining) != 0)
return (!work_pending(work));
switch (linux_update_state(&work->state, states)) {
case WORK_ST_EXEC:
case WORK_ST_CANCEL:
if (linux_work_exec_unblock(work) != 0)
return (1);
/* FALLTHROUGH */
case WORK_ST_IDLE:
work->work_queue = wq;
taskqueue_enqueue(wq->taskqueue, &work->work_task);
return (1);
default:
return (0); /* already on a queue */
}
}
/*
* This function queues the given work structure on the given
* workqueue after a given delay in ticks. It returns non-zero if the
* work was successfully [re-]queued. Else the work is already pending
* for completion.
*/
bool
linux_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned delay)
{
static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
[WORK_ST_IDLE] = WORK_ST_TIMER, /* start timeout */
[WORK_ST_TIMER] = WORK_ST_TIMER, /* NOP */
[WORK_ST_TASK] = WORK_ST_TASK, /* NOP */
[WORK_ST_EXEC] = WORK_ST_TIMER, /* start timeout */
[WORK_ST_CANCEL] = WORK_ST_TIMER, /* start timeout */
};
if (atomic_read(&wq->draining) != 0)
return (!work_pending(&dwork->work));
switch (linux_update_state(&dwork->work.state, states)) {
case WORK_ST_EXEC:
case WORK_ST_CANCEL:
if (delay == 0 && linux_work_exec_unblock(&dwork->work) != 0) {
dwork->timer.expires = jiffies;
return (1);
}
/* FALLTHROUGH */
case WORK_ST_IDLE:
dwork->work.work_queue = wq;
dwork->timer.expires = jiffies + delay;
if (delay == 0) {
linux_delayed_work_enqueue(dwork);
} else if (unlikely(cpu != WORK_CPU_UNBOUND)) {
mtx_lock(&dwork->timer.mtx);
callout_reset_on(&dwork->timer.callout, delay,
&linux_delayed_work_timer_fn, dwork, cpu);
mtx_unlock(&dwork->timer.mtx);
} else {
mtx_lock(&dwork->timer.mtx);
callout_reset(&dwork->timer.callout, delay,
&linux_delayed_work_timer_fn, dwork);
mtx_unlock(&dwork->timer.mtx);
}
return (1);
default:
return (0); /* already on a queue */
}
}
void
linux_work_fn(void *context, int pending)
{
static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
[WORK_ST_IDLE] = WORK_ST_IDLE, /* NOP */
[WORK_ST_TIMER] = WORK_ST_EXEC, /* delayed work w/o timeout */
[WORK_ST_TASK] = WORK_ST_EXEC, /* call callback */
[WORK_ST_EXEC] = WORK_ST_IDLE, /* complete callback */
[WORK_ST_CANCEL] = WORK_ST_IDLE, /* complete cancel */
};
struct work_struct *work;
struct workqueue_struct *wq;
struct work_exec exec;
linux_set_current(curthread);
/* setup local variables */
work = context;
wq = work->work_queue;
/* store target pointer */
exec.target = work;
/* insert executor into list */
WQ_EXEC_LOCK(wq);
TAILQ_INSERT_TAIL(&wq->exec_head, &exec, entry);
while (1) {
switch (linux_update_state(&work->state, states)) {
case WORK_ST_TIMER:
case WORK_ST_TASK:
WQ_EXEC_UNLOCK(wq);
/* call work function */
work->func(work);
WQ_EXEC_LOCK(wq);
/* check if unblocked */
if (exec.target != work) {
/* reapply block */
exec.target = work;
break;
}
/* FALLTHROUGH */
default:
goto done;
}
}
done:
/* remove executor from list */
TAILQ_REMOVE(&wq->exec_head, &exec, entry);
WQ_EXEC_UNLOCK(wq);
}
static void
linux_delayed_work_timer_fn(void *arg)
{
static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
[WORK_ST_IDLE] = WORK_ST_IDLE, /* NOP */
[WORK_ST_TIMER] = WORK_ST_TASK, /* start queueing task */
[WORK_ST_TASK] = WORK_ST_TASK, /* NOP */
[WORK_ST_EXEC] = WORK_ST_TASK, /* queue task another time */
[WORK_ST_CANCEL] = WORK_ST_IDLE, /* complete cancel */
};
struct delayed_work *dwork = arg;
switch (linux_update_state(&dwork->work.state, states)) {
case WORK_ST_TIMER:
linux_delayed_work_enqueue(dwork);
break;
default:
break;
}
}
/*
* This function cancels the given work structure in a synchronous
* fashion. It returns non-zero if the work was successfully
* cancelled. Else the work was already cancelled.
*/
bool
linux_cancel_work_sync(struct work_struct *work)
{
static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
[WORK_ST_IDLE] = WORK_ST_IDLE, /* NOP */
[WORK_ST_TIMER] = WORK_ST_IDLE, /* idle */
[WORK_ST_TASK] = WORK_ST_IDLE, /* idle */
[WORK_ST_EXEC] = WORK_ST_IDLE, /* idle */
[WORK_ST_CANCEL] = WORK_ST_IDLE, /* idle */
};
struct taskqueue *tq;
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
"linux_cancel_work_sync() might sleep");
switch (linux_update_state(&work->state, states)) {
case WORK_ST_IDLE:
return (0);
default:
tq = work->work_queue->taskqueue;
if (taskqueue_cancel(tq, &work->work_task, NULL) != 0)
taskqueue_drain(tq, &work->work_task);
return (1);
}
}
/*
* This function atomically stops the timer and callback. The timer
* callback will not be called after this function returns. This
* functions returns true when the timeout was cancelled. Else the
* timeout was not started or has already been called.
*/
static inline bool
linux_cancel_timer(struct delayed_work *dwork, bool drain)
{
bool cancelled;
mtx_lock(&dwork->timer.mtx);
cancelled = (callout_stop(&dwork->timer.callout) == 1);
mtx_unlock(&dwork->timer.mtx);
/* check if we should drain */
if (drain)
callout_drain(&dwork->timer.callout);
return (cancelled);
}
/*
* This function cancels the given delayed work structure in a
* non-blocking fashion. It returns non-zero if the work was
* successfully cancelled. Else the work may still be busy or already
* cancelled.
*/
bool
linux_cancel_delayed_work(struct delayed_work *dwork)
{
static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
[WORK_ST_IDLE] = WORK_ST_IDLE, /* NOP */
[WORK_ST_TIMER] = WORK_ST_CANCEL, /* cancel */
[WORK_ST_TASK] = WORK_ST_CANCEL, /* cancel */
[WORK_ST_EXEC] = WORK_ST_CANCEL, /* cancel */
[WORK_ST_CANCEL] = WORK_ST_CANCEL, /* cancel */
};
struct taskqueue *tq;
switch (linux_update_state(&dwork->work.state, states)) {
case WORK_ST_TIMER:
if (linux_cancel_timer(dwork, 0))
return (1);
/* FALLTHROUGH */
case WORK_ST_TASK:
case WORK_ST_EXEC:
tq = dwork->work.work_queue->taskqueue;
if (taskqueue_cancel(tq, &dwork->work.work_task, NULL) == 0)
return (1);
/* FALLTHROUGH */
default:
return (0);
}
}
/*
* This function cancels the given work structure in a synchronous
* fashion. It returns non-zero if the work was successfully
* cancelled. Else the work was already cancelled.
*/
bool
linux_cancel_delayed_work_sync(struct delayed_work *dwork)
{
static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
[WORK_ST_IDLE] = WORK_ST_IDLE, /* NOP */
[WORK_ST_TIMER] = WORK_ST_IDLE, /* idle */
[WORK_ST_TASK] = WORK_ST_IDLE, /* idle */
[WORK_ST_EXEC] = WORK_ST_IDLE, /* idle */
[WORK_ST_CANCEL] = WORK_ST_IDLE, /* idle */
};
struct taskqueue *tq;
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
"linux_cancel_delayed_work_sync() might sleep");
switch (linux_update_state(&dwork->work.state, states)) {
case WORK_ST_IDLE:
return (0);
case WORK_ST_TIMER:
if (linux_cancel_timer(dwork, 1)) {
/*
* Make sure taskqueue is also drained before
* returning:
*/
tq = dwork->work.work_queue->taskqueue;
taskqueue_drain(tq, &dwork->work.work_task);
return (1);
}
/* FALLTHROUGH */
default:
tq = dwork->work.work_queue->taskqueue;
if (taskqueue_cancel(tq, &dwork->work.work_task, NULL) != 0)
taskqueue_drain(tq, &dwork->work.work_task);
return (1);
}
}
/*
* This function waits until the given work structure is completed.
* It returns non-zero if the work was successfully
* waited for. Else the work was not waited for.
*/
bool
linux_flush_work(struct work_struct *work)
{
struct taskqueue *tq;
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
"linux_flush_work() might sleep");
switch (atomic_read(&work->state)) {
case WORK_ST_IDLE:
return (0);
default:
tq = work->work_queue->taskqueue;
taskqueue_drain(tq, &work->work_task);
return (1);
}
}
/*
* This function waits until the given delayed work structure is
* completed. It returns non-zero if the work was successfully waited
* for. Else the work was not waited for.
*/
bool
linux_flush_delayed_work(struct delayed_work *dwork)
{
struct taskqueue *tq;
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
"linux_flush_delayed_work() might sleep");
switch (atomic_read(&dwork->work.state)) {
case WORK_ST_IDLE:
return (0);
case WORK_ST_TIMER:
if (linux_cancel_timer(dwork, 1))
linux_delayed_work_enqueue(dwork);
/* FALLTHROUGH */
default:
tq = dwork->work.work_queue->taskqueue;
taskqueue_drain(tq, &dwork->work.work_task);
return (1);
}
}
/*
* This function returns true if the given work is pending, and not
* yet executing:
*/
bool
linux_work_pending(struct work_struct *work)
{
switch (atomic_read(&work->state)) {
case WORK_ST_TIMER:
case WORK_ST_TASK:
return (1);
default:
return (0);
}
}
/*
* This function returns true if the given work is busy.
*/
bool
linux_work_busy(struct work_struct *work)
{
struct taskqueue *tq;
switch (atomic_read(&work->state)) {
case WORK_ST_IDLE:
return (0);
case WORK_ST_EXEC:
case WORK_ST_CANCEL:
tq = work->work_queue->taskqueue;
return (taskqueue_poll_is_busy(tq, &work->work_task));
default:
return (1);
}
}
struct workqueue_struct *
linux_create_workqueue_common(const char *name, int cpus)
{
struct workqueue_struct *wq;
wq = kmalloc(sizeof(*wq), M_WAITOK | M_ZERO);
wq->taskqueue = taskqueue_create(name, M_WAITOK,
taskqueue_thread_enqueue, &wq->taskqueue);
atomic_set(&wq->draining, 0);
taskqueue_start_threads(&wq->taskqueue, cpus, PWAIT, "%s", name);
TAILQ_INIT(&wq->exec_head);
mtx_init(&wq->exec_mtx, "linux_wq_exec", NULL, MTX_DEF);
return (wq);
}
void
linux_destroy_workqueue(struct workqueue_struct *wq)
{
atomic_inc(&wq->draining);
drain_workqueue(wq);
taskqueue_free(wq->taskqueue);
mtx_destroy(&wq->exec_mtx);
kfree(wq);
}
void
linux_init_delayed_work(struct delayed_work *dwork, work_func_t func)
{
memset(dwork, 0, sizeof(*dwork));
INIT_WORK(&dwork->work, func);
mtx_init(&dwork->timer.mtx, spin_lock_name("lkpi-dwork"), NULL,
MTX_DEF | MTX_NOWITNESS);
callout_init_mtx(&dwork->timer.callout, &dwork->timer.mtx, 0);
}
static void
linux_work_init(void *arg)
{
int max_wq_cpus = mp_ncpus + 1;
/* avoid deadlock when there are too few threads */
if (max_wq_cpus < 4)
max_wq_cpus = 4;
linux_system_short_wq = alloc_workqueue("linuxkpi_short_wq", 0, max_wq_cpus);
linux_system_long_wq = alloc_workqueue("linuxkpi_long_wq", 0, max_wq_cpus);
/* populate the workqueue pointers */
system_long_wq = linux_system_long_wq;
system_wq = linux_system_short_wq;
system_power_efficient_wq = linux_system_short_wq;
system_unbound_wq = linux_system_short_wq;
}
SYSINIT(linux_work_init, SI_SUB_LOCK, SI_ORDER_SECOND, linux_work_init, NULL);
static void
linux_work_uninit(void *arg)
{
destroy_workqueue(linux_system_short_wq);
destroy_workqueue(linux_system_long_wq);
/* clear workqueue pointers */
system_long_wq = NULL;
system_wq = NULL;
system_power_efficient_wq = NULL;
system_unbound_wq = NULL;
}
SYSUNINIT(linux_work_uninit, SI_SUB_LOCK, SI_ORDER_SECOND, linux_work_uninit, NULL);

View File

@ -4298,6 +4298,8 @@ compat/linuxkpi/common/src/linux_rcu.c optional compat_linuxkpi \
compile-with "${LINUXKPI_C} -I$S/contrib/ck/include"
compat/linuxkpi/common/src/linux_usb.c optional compat_linuxkpi usb \
compile-with "${LINUXKPI_C}"
compat/linuxkpi/common/src/linux_work.c optional compat_linuxkpi \
compile-with "${LINUXKPI_C}"
# OpenFabrics Enterprise Distribution (Infiniband)
ofed/drivers/infiniband/core/addr.c optional ofed \

View File

@ -12,7 +12,8 @@ SRCS= linux_kmod.c \
linux_rcu.c \
linux_tasklet.c \
linux_idr.c \
linux_usb.c
linux_usb.c \
linux_work.c
SRCS+= bus_if.h \
device_if.h \