MSI-x interrupt support for PCI pass-thru devices.

Includes instruction emulation for memory r/w access. This
opens the door for io-apic, local apic, hpet timer, and
legacy device emulation.

Submitted by:	ryan dot berryhill at sandvine dot com
Reviewed by:	grehan
Obtained from:	Sandvine
This commit is contained in:
Peter Grehan 2012-04-28 16:28:00 +00:00
parent 38f1b189cd
commit cd942e0f25
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/projects/bhyve/; revision=234761
17 changed files with 1187 additions and 26 deletions

View File

@ -454,6 +454,25 @@ vm_setup_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
}
int
vm_setup_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
int idx, uint32_t msg, uint32_t vector_control, uint64_t addr)
{
struct vm_pptdev_msix pptmsix;
bzero(&pptmsix, sizeof(pptmsix));
pptmsix.vcpu = vcpu;
pptmsix.bus = bus;
pptmsix.slot = slot;
pptmsix.func = func;
pptmsix.idx = idx;
pptmsix.msg = msg;
pptmsix.addr = addr;
pptmsix.vector_control = vector_control;
return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
}
uint64_t *
vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
int *ret_entries)

View File

@ -77,6 +77,8 @@ int vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
vm_paddr_t gpa, size_t len, vm_paddr_t hpa);
int vm_setup_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
int dest, int vector, int numvec);
int vm_setup_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
int idx, uint32_t msg, uint32_t vector_control, uint64_t addr);
/*
* Return a pointer to the statistics buffer. Note that this is not MT-safe.

View File

@ -227,7 +227,8 @@ enum vm_exitcode {
VM_EXITCODE_HLT,
VM_EXITCODE_MTRAP,
VM_EXITCODE_PAUSE,
VM_EXITCODE_MAX,
VM_EXITCODE_PAGING,
VM_EXITCODE_MAX
};
struct vm_exit {
@ -243,6 +244,9 @@ struct vm_exit {
uint16_t port;
uint32_t eax; /* valid for out */
} inout;
struct {
uint64_t cr3;
} paging;
/*
* VMX specific payload. Used when there is no "better"
* exitcode to represent the VM-exit.

View File

@ -108,6 +108,17 @@ struct vm_pptdev_msi {
int destcpu;
};
struct vm_pptdev_msix {
int vcpu;
int bus;
int slot;
int func;
int idx;
uint32_t msg;
uint32_t vector_control;
uint64_t addr;
};
struct vm_nmi {
int cpuid;
};
@ -143,6 +154,7 @@ enum {
IOCNUM_UNBIND_PPTDEV,
IOCNUM_MAP_PPTDEV_MMIO,
IOCNUM_PPTDEV_MSI,
IOCNUM_PPTDEV_MSIX,
IOCNUM_INJECT_NMI,
IOCNUM_VM_STATS,
IOCNUM_VM_STAT_DESC,
@ -182,6 +194,8 @@ enum {
_IOW('v', IOCNUM_MAP_PPTDEV_MMIO, struct vm_pptdev_mmio)
#define VM_PPTDEV_MSI \
_IOW('v', IOCNUM_PPTDEV_MSI, struct vm_pptdev_msi)
#define VM_PPTDEV_MSIX \
_IOW('v', IOCNUM_PPTDEV_MSIX, struct vm_pptdev_msix)
#define VM_INJECT_NMI \
_IOW('v', IOCNUM_INJECT_NMI, struct vm_nmi)
#define VM_STATS \

View File

@ -65,6 +65,7 @@ uint64_t vmcs_read(uint32_t encoding);
#define vmcs_instruction_error() vmcs_read(VMCS_INSTRUCTION_ERROR)
#define vmcs_exit_reason() (vmcs_read(VMCS_EXIT_REASON) & 0xffff)
#define vmcs_exit_qualification() vmcs_read(VMCS_EXIT_QUALIFICATION)
#define vmcs_guest_cr3() vmcs_read(VMCS_GUEST_CR3)
#endif /* _KERNEL */

View File

@ -1185,6 +1185,10 @@ vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
case EXIT_REASON_CPUID:
handled = vmx_handle_cpuid(vcpu, vmxctx);
break;
case EXIT_REASON_EPT_FAULT:
vmexit->exitcode = VM_EXITCODE_PAGING;
vmexit->u.paging.cr3 = vmcs_guest_cr3();
break;
default:
break;
}

View File

@ -32,6 +32,7 @@ __FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/pciio.h>
@ -56,9 +57,12 @@ __FBSDID("$FreeBSD$");
#define MAX_MMIOSEGS (PCIR_MAX_BAR_0 + 1)
#define MAX_MSIMSGS 32
MALLOC_DEFINE(M_PPTMSIX, "pptmsix", "Passthru MSI-X resources");
struct pptintr_arg { /* pptintr(pptintr_arg) */
struct pptdev *pptdev;
int msg;
int vec;
int vcpu;
};
static struct pptdev {
@ -75,6 +79,16 @@ static struct pptdev {
void *cookie[MAX_MSIMSGS];
struct pptintr_arg arg[MAX_MSIMSGS];
} msi;
struct {
int num_msgs;
int startrid;
int msix_table_rid;
struct resource *msix_table_res;
struct resource **res;
void **cookie;
struct pptintr_arg *arg;
} msix;
} pptdevs[32];
static int num_pptdevs;
@ -209,6 +223,57 @@ ppt_teardown_msi(struct pptdev *ppt)
ppt->msi.num_msgs = 0;
}
static void
ppt_teardown_msix_intr(struct pptdev *ppt, int idx)
{
int rid;
struct resource *res;
void *cookie;
rid = ppt->msix.startrid + idx;
res = ppt->msix.res[idx];
cookie = ppt->msix.cookie[idx];
if (cookie != NULL)
bus_teardown_intr(ppt->dev, res, cookie);
if (res != NULL)
bus_release_resource(ppt->dev, SYS_RES_IRQ, rid, res);
ppt->msix.res[idx] = NULL;
ppt->msix.cookie[idx] = NULL;
}
static void
ppt_teardown_msix(struct pptdev *ppt)
{
int i, error;
if (ppt->msix.num_msgs == 0)
return;
for (i = 0; i < ppt->msix.num_msgs; i++)
ppt_teardown_msix_intr(ppt, i);
if (ppt->msix.msix_table_res) {
bus_release_resource(ppt->dev, SYS_RES_MEMORY,
ppt->msix.msix_table_rid,
ppt->msix.msix_table_res);
ppt->msix.msix_table_res = NULL;
ppt->msix.msix_table_rid = 0;
}
free(ppt->msix.res, M_PPTMSIX);
free(ppt->msix.cookie, M_PPTMSIX);
free(ppt->msix.arg, M_PPTMSIX);
error = pci_release_msi(ppt->dev);
if (error)
printf("ppt_teardown_msix: Failed to release MSI-X resources (error %i)\n", error);
ppt->msix.num_msgs = 0;
}
int
ppt_assign_device(struct vm *vm, int bus, int slot, int func)
{
@ -244,6 +309,7 @@ ppt_unassign_device(struct vm *vm, int bus, int slot, int func)
return (EBUSY);
ppt_unmap_mmio(vm, ppt);
ppt_teardown_msi(ppt);
ppt_teardown_msix(ppt);
iommu_remove_device(vm_iommu_domain(vm), bus, slot, func);
ppt->vm = NULL;
return (0);
@ -309,10 +375,10 @@ pptintr(void *arg)
pptarg = arg;
ppt = pptarg->pptdev;
vec = ppt->msi.vector + pptarg->msg;
vec = pptarg->vec;
if (ppt->vm != NULL)
(void) lapic_set_intr(ppt->vm, ppt->msi.vcpu, vec);
(void) lapic_set_intr(ppt->vm, pptarg->vcpu, vec);
else {
/*
* XXX
@ -431,7 +497,7 @@ ppt_setup_msi(struct vm *vm, int vcpu, int bus, int slot, int func,
break;
ppt->msi.arg[i].pptdev = ppt;
ppt->msi.arg[i].msg = i;
ppt->msi.arg[i].vec = vector + i;
error = bus_setup_intr(ppt->dev, ppt->msi.res[i],
INTR_TYPE_NET | INTR_MPSAFE,
@ -448,3 +514,110 @@ ppt_setup_msi(struct vm *vm, int vcpu, int bus, int slot, int func,
return (0);
}
int
ppt_setup_msix(struct vm *vm, int vcpu, int bus, int slot, int func,
int idx, uint32_t msg, uint32_t vector_control, uint64_t addr)
{
struct pptdev *ppt;
struct pci_devinfo *dinfo;
int numvec, vector_count, rid, error;
size_t res_size, cookie_size, arg_size;
ppt = ppt_find(bus, slot, func);
if (ppt == NULL)
return (ENOENT);
if (ppt->vm != vm) /* Make sure we own this device */
return (EBUSY);
dinfo = device_get_ivars(ppt->dev);
if (!dinfo)
return (ENXIO);
/*
* First-time configuration:
* Allocate the MSI-X table
* Allocate the IRQ resources
* Set up some variables in ppt->msix
*/
if (!ppt->msix.msix_table_res) {
ppt->msix.res = NULL;
ppt->msix.cookie = NULL;
ppt->msix.arg = NULL;
rid = dinfo->cfg.msix.msix_table_bar;
ppt->msix.msix_table_res = bus_alloc_resource_any(ppt->dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (ppt->msix.msix_table_res == NULL)
return (ENOSPC);
ppt->msix.msix_table_rid = rid;
vector_count = numvec = pci_msix_count(ppt->dev);
error = pci_alloc_msix(ppt->dev, &numvec);
if (error)
return (error);
else if (vector_count != numvec) {
pci_release_msi(ppt->dev);
return (ENOSPC);
}
ppt->msix.num_msgs = numvec;
ppt->msix.startrid = 1;
res_size = numvec * sizeof(ppt->msix.res[0]);
cookie_size = numvec * sizeof(ppt->msix.cookie[0]);
arg_size = numvec * sizeof(ppt->msix.arg[0]);
ppt->msix.res = malloc(res_size, M_PPTMSIX, M_WAITOK);
ppt->msix.cookie = malloc(cookie_size, M_PPTMSIX, M_WAITOK);
ppt->msix.arg = malloc(arg_size, M_PPTMSIX, M_WAITOK);
if (ppt->msix.res == NULL || ppt->msix.cookie == NULL ||
ppt->msix.arg == NULL) {
ppt_teardown_msix(ppt);
return (ENOSPC);
}
bzero(ppt->msix.res, res_size);
bzero(ppt->msix.cookie, cookie_size);
bzero(ppt->msix.arg, arg_size);
}
if ((vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
/* Tear down the IRQ if it's already set up */
ppt_teardown_msix_intr(ppt, idx);
/* Allocate the IRQ resource */
ppt->msix.cookie[idx] = NULL;
rid = ppt->msix.startrid + idx;
ppt->msix.res[idx] = bus_alloc_resource_any(ppt->dev, SYS_RES_IRQ,
&rid, RF_ACTIVE);
if (ppt->msix.res[idx] == NULL)
return (ENXIO);
ppt->msix.arg[idx].pptdev = ppt;
ppt->msix.arg[idx].vec = msg;
ppt->msix.arg[idx].vcpu = (addr >> 12) & 0xFF;
/* Setup the MSI-X interrupt */
error = bus_setup_intr(ppt->dev, ppt->msix.res[idx],
INTR_TYPE_NET | INTR_MPSAFE,
pptintr, NULL, &ppt->msix.arg[idx],
&ppt->msix.cookie[idx]);
if (error != 0) {
bus_teardown_intr(ppt->dev, ppt->msix.res[idx], ppt->msix.cookie[idx]);
bus_release_resource(ppt->dev, SYS_RES_IRQ, rid, ppt->msix.res[idx]);
ppt->msix.cookie[idx] = NULL;
ppt->msix.res[idx] = NULL;
return (ENXIO);
}
} else {
/* Masked, tear it down if it's already been set up */
ppt_teardown_msix_intr(ppt, idx);
}
return (0);
}

View File

@ -36,5 +36,6 @@ int ppt_map_mmio(struct vm *vm, int bus, int slot, int func,
vm_paddr_t gpa, size_t len, vm_paddr_t hpa);
int ppt_setup_msi(struct vm *vm, int vcpu, int bus, int slot, int func,
int destcpu, int vector, int numvec);
int ppt_setup_msix(struct vm *vm, int vcpu, int bus, int slot, int func,
int idx, uint32_t msg, uint32_t vector_control, uint64_t addr);
#endif

View File

@ -778,6 +778,7 @@ vlapic_init(struct vm *vm, int vcpuid)
void
vlapic_cleanup(struct vlapic *vlapic)
{
vlapic_op_halt(vlapic);
vdev_unregister(vlapic);
free(vlapic, M_VLAPIC);
}

View File

@ -158,6 +158,7 @@ vmmdev_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
struct vm_pptdev *pptdev;
struct vm_pptdev_mmio *pptmmio;
struct vm_pptdev_msi *pptmsi;
struct vm_pptdev_msix *pptmsix;
struct vm_nmi *vmnmi;
struct vm_stats *vmstats;
struct vm_stat_desc *statdesc;
@ -240,6 +241,14 @@ vmmdev_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
pptmsi->destcpu, pptmsi->vector,
pptmsi->numvec);
break;
case VM_PPTDEV_MSIX:
pptmsix = (struct vm_pptdev_msix *)data;
error = ppt_setup_msix(sc->vm, pptmsix->vcpu,
pptmsix->bus, pptmsix->slot,
pptmsix->func, pptmsix->idx,
pptmsix->msg, pptmsix->vector_control,
pptmsix->addr);
break;
case VM_MAP_PPTDEV_MMIO:
pptmmio = (struct vm_pptdev_mmio *)data;
error = ppt_map_mmio(sc->vm, pptmmio->bus, pptmmio->slot,

View File

@ -4,7 +4,8 @@
PROG= bhyve
SRCS= atpic.c consport.c dbgport.c elcr.c fbsdrun.c inout.c mevent.c
SRCS= atpic.c consport.c dbgport.c elcr.c fbsdrun.c inout.c
SRCS+= instruction_emul.c mevent.c
SRCS+= pci_emul.c pci_hostbridge.c pci_passthru.c pci_virtio_block.c
SRCS+= pci_virtio_net.c pit_8254.c post.c rtc.c uart.c xmsr.c

View File

@ -53,6 +53,7 @@ __FBSDID("$FreeBSD$");
#include "mevent.h"
#include "pci_emul.h"
#include "xmsr.h"
#include "instruction_emul.h"
#define DEFAULT_GUEST_HZ 100
#define DEFAULT_GUEST_TSLICE 200
@ -108,6 +109,7 @@ struct fbsdstats {
uint64_t vmexit_hlt;
uint64_t vmexit_pause;
uint64_t vmexit_mtrap;
uint64_t vmexit_paging;
uint64_t cpu_switch_rotate;
uint64_t cpu_switch_direct;
int io_reset;
@ -412,6 +414,20 @@ vmexit_mtrap(struct vmctx *ctx, struct vm_exit *vmexit, int *pvcpu)
return (VMEXIT_RESTART);
}
static int
vmexit_paging(struct vmctx *ctx, struct vm_exit *vmexit, int *pvcpu)
{
stats.vmexit_paging++;
if (emulate_instruction(ctx, *pvcpu, vmexit->rip, vmexit->u.paging.cr3) != 0) {
printf("Failed to emulate instruction at 0x%lx\n", vmexit->rip);
return (VMEXIT_ABORT);
}
return (VMEXIT_CONTINUE);
}
static void
sigalrm(int sig)
{
@ -446,12 +462,13 @@ setup_timeslice(void)
}
static vmexit_handler_t handler[VM_EXITCODE_MAX] = {
[VM_EXITCODE_INOUT] = vmexit_inout,
[VM_EXITCODE_VMX] = vmexit_vmx,
[VM_EXITCODE_BOGUS] = vmexit_bogus,
[VM_EXITCODE_RDMSR] = vmexit_rdmsr,
[VM_EXITCODE_WRMSR] = vmexit_wrmsr,
[VM_EXITCODE_MTRAP] = vmexit_mtrap,
[VM_EXITCODE_INOUT] = vmexit_inout,
[VM_EXITCODE_VMX] = vmexit_vmx,
[VM_EXITCODE_BOGUS] = vmexit_bogus,
[VM_EXITCODE_RDMSR] = vmexit_rdmsr,
[VM_EXITCODE_WRMSR] = vmexit_wrmsr,
[VM_EXITCODE_MTRAP] = vmexit_mtrap,
[VM_EXITCODE_PAGING] = vmexit_paging
};
static void

View File

@ -0,0 +1,555 @@
/*-
* Copyright (c) 2012 Sandvine, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <strings.h>
#include <unistd.h>
#include <machine/vmm.h>
#include <vmmapi.h>
#include "fbsdrun.h"
#include "instruction_emul.h"
#define PREFIX_LOCK 0xF0
#define PREFIX_REPNE 0xF2
#define PREFIX_REPE 0xF3
#define PREFIX_CS_OVERRIDE 0x2E
#define PREFIX_SS_OVERRIDE 0x36
#define PREFIX_DS_OVERRIDE 0x3E
#define PREFIX_ES_OVERRIDE 0x26
#define PREFIX_FS_OVERRIDE 0x64
#define PREFIX_GS_OVERRIDE 0x65
#define PREFIX_BRANCH_NOT_TAKEN 0x2E
#define PREFIX_BRANCH_TAKEN 0x3E
#define PREFIX_OPSIZE 0x66
#define PREFIX_ADDRSIZE 0x67
#define OPCODE_2BYTE_ESCAPE 0x0F
#define OPCODE_3BYTE_ESCAPE 0x38
#define MODRM_MOD_MASK 0xC0
#define MODRM_MOD_SHIFT 6
#define MODRM_RM_MASK 0x07
#define MODRM_RM_SHIFT 0
#define MODRM_REG_MASK 0x38
#define MODRM_REG_SHIFT 3
#define MOD_INDIRECT 0x0
#define MOD_INDIRECT_DISP8 0x1
#define MOD_INDIRECT_DISP32 0x2
#define MOD_DIRECT 0x3
#define RM_EAX 0x0
#define RM_ECX 0x1
#define RM_EDX 0x2
#define RM_EBX 0x3
#define RM_SIB 0x4
#define RM_DISP32 0x5
#define RM_EBP RM_DISP32
#define RM_ESI 0x6
#define RM_EDI 0x7
#define REG_EAX 0x0
#define REG_ECX 0x1
#define REG_EDX 0x2
#define REG_EBX 0x3
#define REG_ESP 0x4
#define REG_EBP 0x5
#define REG_ESI 0x6
#define REG_EDI 0x7
#define REG_R8 0x8
#define REG_R9 0x9
#define REG_R10 0xA
#define REG_R11 0xB
#define REG_R12 0xC
#define REG_R13 0xD
#define REG_R14 0xE
#define REG_R15 0xF
#define HAS_MODRM 1
#define FROM_RM (1<<1)
#define FROM_REG (1<<2)
#define TO_RM (1<<3)
#define TO_REG (1<<4)
#define REX_MASK 0xF0
#define REX_PREFIX 0x40
#define is_rex_prefix(x) ( ((x) & REX_MASK) == REX_PREFIX )
#define REX_W_MASK 0x8
#define REX_R_MASK 0x4
#define REX_X_MASK 0x2
#define REX_B_MASK 0x1
#define is_prefix(x) ((x) == PREFIX_LOCK || (x) == PREFIX_REPNE || \
(x) == PREFIX_REPE || (x) == PREFIX_CS_OVERRIDE || \
(x) == PREFIX_SS_OVERRIDE || (x) == PREFIX_DS_OVERRIDE || \
(x) == PREFIX_ES_OVERRIDE || (x) == PREFIX_FS_OVERRIDE || \
(x) == PREFIX_GS_OVERRIDE || (x) == PREFIX_BRANCH_NOT_TAKEN || \
(x) == PREFIX_BRANCH_TAKEN || (x) == PREFIX_OPSIZE || \
(x) == PREFIX_ADDRSIZE || is_rex_prefix((x)))
#define PAGE_FRAME_MASK 0x80
#define PAGE_OFFSET_MASK 0xFFF
#define PAGE_TABLE_ENTRY_MASK (~PAGE_OFFSET_MASK)
#define PML4E_OFFSET_MASK 0x0000FF8000000000
#define PML4E_SHIFT 39
#define MAX_EMULATED_REGIONS 8
int registered_regions = 0;
struct memory_region
{
uintptr_t start;
uintptr_t end;
emulated_read_func_t memread;
emulated_write_func_t memwrite;
void *arg;
} emulated_regions[MAX_EMULATED_REGIONS];
struct decoded_instruction
{
void *instruction;
uint8_t *opcode;
uint8_t *modrm;
uint8_t *sib;
uint8_t *displacement;
uint8_t *immediate;
uint8_t opcode_flags;
uint8_t addressing_mode;
uint8_t rm;
uint8_t reg;
uint8_t rex_r;
uint8_t rex_w;
uint8_t rex_b;
uint8_t rex_x;
int32_t disp;
};
static enum vm_reg_name vm_reg_name_mappings[] = {
[REG_EAX] = VM_REG_GUEST_RAX,
[REG_EBX] = VM_REG_GUEST_RBX,
[REG_ECX] = VM_REG_GUEST_RCX,
[REG_EDX] = VM_REG_GUEST_RDX,
[REG_ESP] = VM_REG_GUEST_RSP,
[REG_EBP] = VM_REG_GUEST_RBP,
[REG_ESI] = VM_REG_GUEST_RSI,
[REG_EDI] = VM_REG_GUEST_RDI,
[REG_R8] = VM_REG_GUEST_R8,
[REG_R9] = VM_REG_GUEST_R9,
[REG_R10] = VM_REG_GUEST_R10,
[REG_R11] = VM_REG_GUEST_R11,
[REG_R12] = VM_REG_GUEST_R12,
[REG_R13] = VM_REG_GUEST_R13,
[REG_R14] = VM_REG_GUEST_R14,
[REG_R15] = VM_REG_GUEST_R15
};
uint8_t one_byte_opcodes[256] = {
[0x89] = HAS_MODRM | FROM_REG | TO_RM,
[0x8B] = HAS_MODRM | FROM_RM | TO_REG,
};
static uintptr_t
gla2gpa(uint64_t gla, uint64_t guest_cr3)
{
uint64_t *table;
uint64_t mask, entry;
int level, shift;
uintptr_t page_frame;
table = paddr_guest2host(guest_cr3 & PAGE_TABLE_ENTRY_MASK);
mask = PML4E_OFFSET_MASK;
shift = PML4E_SHIFT;
for (level = 0; level < 4; ++level)
{
entry = table[(gla & mask) >> shift];
table = (uint64_t*)(entry & PAGE_TABLE_ENTRY_MASK);
/* This entry does not point to another page table */
if (entry & PAGE_FRAME_MASK || level >= 3)
break;
table = paddr_guest2host((uintptr_t)table);
mask >>= 9;
shift -= 9;
}
mask = (1 << shift) - 1;
page_frame = ((uintptr_t)table & ~mask);
return (page_frame | (gla & mask));
}
static void *
gla2hla(uint64_t gla, uint64_t guest_cr3)
{
uintptr_t gpa;
gpa = gla2gpa(gla, guest_cr3);
return paddr_guest2host(gpa);
}
/*
* Decodes all of the prefixes of the instruction. Only a subset of REX
* prefixes are currently supported. If any unsupported prefix is
* encountered, returns -1.
*/
static int
decode_prefixes(struct decoded_instruction *decoded)
{
uint8_t *current_prefix;
current_prefix = decoded->instruction;
if (is_rex_prefix(*current_prefix)) {
decoded->rex_w = *current_prefix & REX_W_MASK;
decoded->rex_r = *current_prefix & REX_R_MASK;
decoded->rex_x = *current_prefix & REX_X_MASK;
decoded->rex_b = *current_prefix & REX_B_MASK;
current_prefix++;
} else if (is_prefix(*current_prefix)) {
return (-1);
}
decoded->opcode = current_prefix;
return (0);
}
/*
* Decodes the instruction's opcode. If the opcode is not understood, returns
* -1 indicating an error. Sets the instruction's mod_rm pointer to the
* location of the ModR/M field.
*/
static int
decode_opcode(struct decoded_instruction *decoded)
{
uint8_t opcode, flags;
opcode = *decoded->opcode;
flags = one_byte_opcodes[opcode];
if (!flags)
return (-1);
if (flags & HAS_MODRM) {
decoded->modrm = decoded->opcode + 1;
}
decoded->opcode_flags = flags;
return (0);
}
/*
* Decodes the instruction's ModR/M field. Sets the instruction's sib pointer
* to the location of the SIB if one is expected to be present, or 0 if not.
*/
static int
decode_mod_rm(struct decoded_instruction *decoded)
{
uint8_t modrm;
uint8_t *extension_operands;
if (decoded->modrm) {
modrm = *decoded->modrm;
decoded->addressing_mode = (modrm & MODRM_MOD_MASK) >> MODRM_MOD_SHIFT;
decoded->rm = (modrm & MODRM_RM_MASK) >> MODRM_RM_SHIFT;
decoded->reg = (modrm & MODRM_REG_MASK) >> MODRM_REG_SHIFT;
if (decoded->rex_b)
decoded->rm |= (1<<3);
if (decoded->rex_r)
decoded->reg |= (1<<3);
extension_operands = decoded->modrm + 1;
if (decoded->rm == RM_SIB) {
decoded->sib = decoded->modrm + 1;
extension_operands = decoded->sib + 1;
}
switch (decoded->addressing_mode) {
case MOD_INDIRECT:
case MOD_DIRECT:
decoded->displacement = 0;
break;
case MOD_INDIRECT_DISP8:
decoded->displacement = extension_operands;
break;
case MOD_INDIRECT_DISP32:
decoded->displacement = extension_operands;
break;
}
}
return (0);
}
/*
* Decodes the instruction's SIB field. No such instructions are currently
* supported, so do nothing and return -1 if there is a SIB field, 0 otherwise.
*/
static int
decode_sib(struct decoded_instruction *decoded)
{
if (decoded->sib)
return (-1);
return (0);
}
/*
* Grabs and saves the instruction's immediate operand and displacement if
* they are present. Immediates are not currently supported, so if an
* immediate is present it will return -1 indicating an error.
*/
static int
decode_extension_operands(struct decoded_instruction *decoded)
{
if (decoded->displacement) {
if (decoded->addressing_mode == MOD_INDIRECT_DISP8) {
decoded->disp = (int32_t)*decoded->displacement;
} else if (decoded->addressing_mode == MOD_INDIRECT_DISP32) {
decoded->disp = *((int32_t*)decoded->displacement);
}
}
if (decoded->immediate) {
return (-1);
}
return (0);
}
static int
decode_instruction(void *instr, struct decoded_instruction *decoded)
{
int error;
bzero(decoded, sizeof(*decoded));
decoded->instruction = instr;
error = decode_prefixes(decoded);
if (error)
return (error);
error = decode_opcode(decoded);
if (error)
return (error);
error = decode_mod_rm(decoded);
if (error)
return (error);
error = decode_sib(decoded);
if (error)
return (error);
error = decode_extension_operands(decoded);
if (error)
return (error);
return (0);
}
static struct memory_region *
find_region(uintptr_t addr)
{
int i;
for (i = 0; i < registered_regions; ++i) {
if (emulated_regions[i].start <= addr &&
emulated_regions[i].end >= addr) {
return &emulated_regions[i];
}
}
return (0);
}
static enum vm_reg_name
get_vm_reg_name(uint8_t reg)
{
return vm_reg_name_mappings[reg];
}
static int
get_operand(struct vmctx *vm, int vcpu, uint64_t guest_cr3,
const struct decoded_instruction *instruction, uint64_t *operand)
{
enum vm_reg_name regname;
uint64_t reg;
uintptr_t target;
int error;
uint8_t rm, addressing_mode;
struct memory_region *emulated_memory;
if (instruction->opcode_flags & FROM_RM) {
rm = instruction->rm;
addressing_mode = instruction->addressing_mode;
} else if (instruction->opcode_flags & FROM_REG) {
rm = instruction->reg;
addressing_mode = MOD_DIRECT;
} else
return (-1);
regname = get_vm_reg_name(rm);
error = vm_get_register(vm, vcpu, regname, &reg);
if (error)
return (error);
switch (addressing_mode) {
case MOD_DIRECT:
*operand = reg;
return (0);
case MOD_INDIRECT:
target = gla2gpa(reg, guest_cr3);
emulated_memory = find_region(target);
if (emulated_memory) {
return emulated_memory->memread(vm, vcpu, target,
4, operand,
emulated_memory->arg);
}
return (-1);
case MOD_INDIRECT_DISP8:
case MOD_INDIRECT_DISP32:
target = gla2gpa(reg, guest_cr3);
target += instruction->disp;
emulated_memory = find_region(target);
if (emulated_memory) {
return emulated_memory->memread(vm, vcpu, target,
4, operand,
emulated_memory->arg);
}
return (-1);
default:
return (-1);
}
}
static int
perform_write(struct vmctx *vm, int vcpu, uint64_t guest_cr3,
const struct decoded_instruction *instruction, uint64_t operand)
{
enum vm_reg_name regname;
uintptr_t target;
int error;
uint64_t reg;
struct memory_region *emulated_memory;
uint8_t addressing_mode;
if (instruction->opcode_flags & TO_RM) {
reg = instruction->rm;
addressing_mode = instruction->addressing_mode;
} else if (instruction->opcode_flags & TO_REG) {
reg = instruction->reg;
addressing_mode = MOD_DIRECT;
} else
return (-1);
regname = get_vm_reg_name(reg);
error = vm_get_register(vm, vcpu, regname, &reg);
if (error)
return (error);
switch(addressing_mode) {
case MOD_DIRECT:
return vm_set_register(vm, vcpu, regname, operand);
case MOD_INDIRECT:
target = gla2gpa(reg, guest_cr3);
emulated_memory = find_region(target);
if (emulated_memory) {
return emulated_memory->memwrite(vm, vcpu, target,
4, operand,
emulated_memory->arg);
}
return (-1);
default:
return (-1);
}
}
static int
emulate_decoded_instruction(struct vmctx *vm, int vcpu, uint64_t cr3,
const struct decoded_instruction *instruction)
{
uint64_t operand;
int error;
error = get_operand(vm, vcpu, cr3, instruction, &operand);
if (error)
return (error);
return perform_write(vm, vcpu, cr3, instruction, operand);
}
int
emulate_instruction(struct vmctx *vm, int vcpu, uint64_t rip, uint64_t cr3)
{
struct decoded_instruction instr;
int error;
void *instruction = gla2hla(rip, cr3);
if ((error = decode_instruction(instruction, &instr)) != 0)
return (error);
return emulate_decoded_instruction(vm, vcpu, cr3, &instr);
}
struct memory_region *
register_emulated_memory(uintptr_t start, size_t len, emulated_read_func_t memread,
emulated_write_func_t memwrite, void *arg)
{
if (registered_regions > MAX_EMULATED_REGIONS)
return (NULL);
struct memory_region *region = &emulated_regions[registered_regions];
region->start = start;
region->end = start + len;
region->memread = memread;
region->memwrite = memwrite;
region->arg = arg;
registered_regions++;
return (region);
}
void
move_memory_region(struct memory_region *region, uintptr_t start)
{
size_t len;
len = region->end - region->start;
region->start = start;
region->end = start + len;
}

View File

@ -0,0 +1,47 @@
/*-
* Copyright (c) 2012 Sandvine, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _INSTRUCTION_EMUL_H_
#define _INSTRUCTION_EMUL_H_
struct memory_region;
typedef int (*emulated_read_func_t)(struct vmctx *vm, int vcpu, uintptr_t addr,
int size, uint64_t *data, void *arg);
typedef int (*emulated_write_func_t)(struct vmctx *vm, int vcpu, uintptr_t addr,
int size, uint64_t data, void *arg);
int emulate_instruction(struct vmctx *vm, int vcpu, uint64_t rip,
uint64_t cr3);
struct memory_region *register_emulated_memory(uintptr_t start, size_t len,
emulated_read_func_t memread,
emulated_write_func_t memwrite,
void *arg);
void move_memory_region(struct memory_region *memory_region, uintptr_t start);
#endif

View File

@ -45,6 +45,7 @@ __FBSDID("$FreeBSD$");
#include "fbsdrun.h"
#include "inout.h"
#include "pci_emul.h"
#include "instruction_emul.h"
#define CONF1_ADDR_PORT 0x0cf8
#define CONF1_DATA_PORT 0x0cfc
@ -571,6 +572,29 @@ pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
}
void
msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask;
int off, table_bar;
off = offset - capoff;
table_bar = pi->pi_msix.table_bar;
/* Message Control Register */
if (off == 2 && bytes == 2) {
rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
}
CFGWRITE(pi, offset, val, bytes);
}
void
msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
@ -847,6 +871,11 @@ pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
assert(0);
}
pci_set_cfgdata32(pi, coff, bar);
if (pi->pi_bar[idx].handler) {
pi->pi_bar[idx].handler(pi, idx, bar);
}
} else if (pci_emul_iscap(pi, coff)) {
pci_emul_capwrite(pi, coff, bytes, *eax);
} else {

View File

@ -42,6 +42,7 @@
struct vmctx;
struct pci_devinst;
struct memory_region;
struct pci_devemu {
char *pe_emu; /* Name of device emulation */
@ -73,14 +74,30 @@ enum pcibar_type {
PCIBAR_MEMHI64
};
typedef int (*bar_write_func_t)(struct pci_devinst *pdi, int idx, uint64_t bar);
struct pcibar {
enum pcibar_type type; /* io or memory */
uint64_t size;
uint64_t addr;
bar_write_func_t handler;
};
#define PI_NAMESZ 40
struct msix_table_entry {
uint64_t addr;
uint32_t msg_data;
uint32_t vector_control;
} __packed;
/*
* In case the structure is modified to hold extra information, use a define
* for the size that should be emulated.
*/
#define MSIX_TABLE_ENTRY_SIZE 16
#define MAX_MSIX_TABLE_SIZE 2048
struct pci_devinst {
struct pci_devemu *pi_d;
struct vmctx *pi_vmctx;
@ -96,6 +113,19 @@ struct pci_devinst {
int msgnum;
} pi_msi;
struct {
int enabled;
int table_bar;
int pba_bar;
size_t table_offset;
uintptr_t table_gpa;
size_t table_size;
int table_count;
size_t pba_offset;
struct memory_region *table_bar_region;
struct msix_table_entry table[MAX_MSIX_TABLE_SIZE];
} pi_msix;
void *pi_arg; /* devemu-private data */
u_char pi_cfgdata[PCI_REGMAX + 1];
@ -111,6 +141,14 @@ struct msicap {
uint16_t msgdata;
} __packed;
struct msixcap {
uint8_t capid;
uint8_t nextptr;
uint16_t msgctrl;
uint32_t table_offset;
uint32_t pba_offset;
} __packed;
void init_pci(struct vmctx *ctx);
void pci_parse_slot(char *opt);
void pci_parse_name(char *opt);
@ -120,6 +158,8 @@ int pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, uint64_t hostbase,
int pci_emul_add_msicap(struct pci_devinst *pi, int msgnum);
void msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val);
void msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val);
void pci_generate_msi(struct pci_devinst *pi, int msgnum);
int pci_msi_enabled(struct pci_devinst *pi);

View File

@ -47,6 +47,7 @@ __FBSDID("$FreeBSD$");
#include <machine/vmm.h>
#include <vmmapi.h>
#include "pci_emul.h"
#include "instruction_emul.h"
#ifndef _PATH_DEVPCI
#define _PATH_DEVPCI "/dev/pci"
@ -58,6 +59,11 @@ __FBSDID("$FreeBSD$");
#define LEGACY_SUPPORT 1
#define MSIX_TABLE_BIR_MASK 7
#define MSIX_TABLE_OFFSET_MASK (~MSIX_TABLE_BIR_MASK);
#define MSIX_TABLE_COUNT(x) (((x) & 0x7FF) + 1)
#define MSIX_CAPLEN 12
static int pcifd = -1;
static int iofd = -1;
@ -69,6 +75,9 @@ struct passthru_softc {
int msgctrl;
int emulated;
} psc_msi;
struct {
int capoff;
} psc_msix;
struct pcisel psc_sel;
};
@ -152,17 +161,19 @@ passthru_add_msicap(struct pci_devinst *pi, int msgnum, int nextptr)
static int
cfginitmsi(struct passthru_softc *sc)
{
int ptr, cap, sts, caplen;
int ptr, capptr, cap, sts, caplen;
uint32_t u32;
struct pcisel sel;
struct pci_devinst *pi;
struct msixcap msixcap;
uint32_t *msixcap_ptr;
pi = sc->psc_pi;
sel = sc->psc_sel;
/*
* Parse the capabilities and cache the location of the MSI
* capability.
* and MSI-X capabilities.
*/
sts = read_config(&sel, PCIR_STATUS, 2);
if (sts & PCIM_STATUS_CAPPRESENT) {
@ -179,18 +190,44 @@ cfginitmsi(struct passthru_softc *sc)
ptr + 2, 2);
sc->psc_msi.emulated = 0;
caplen = msi_caplen(sc->psc_msi.msgctrl);
capptr = ptr;
while (caplen > 0) {
u32 = read_config(&sel, ptr, 4);
pci_set_cfgdata32(pi, ptr, u32);
u32 = read_config(&sel, capptr, 4);
pci_set_cfgdata32(pi, capptr, u32);
caplen -= 4;
ptr += 4;
capptr += 4;
}
} else if (cap == PCIY_MSIX) {
/*
* Copy the MSI-X capability
*/
sc->psc_msix.capoff = ptr;
caplen = 12;
msixcap_ptr = (uint32_t*) &msixcap;
capptr = ptr;
while (caplen > 0) {
u32 = read_config(&sel, capptr, 4);
*msixcap_ptr = u32;
pci_set_cfgdata32(pi, capptr, u32);
caplen -= 4;
capptr += 4;
msixcap_ptr++;
}
break;
}
ptr = read_config(&sel, ptr + PCICAP_NEXTPTR, 1);
}
}
if (sc->psc_msix.capoff == 0)
return (-1);
pi->pi_msix.pba_bar = msixcap.pba_offset & MSIX_TABLE_BIR_MASK;
pi->pi_msix.pba_offset = msixcap.pba_offset & MSIX_TABLE_OFFSET_MASK;
pi->pi_msix.table_bar = msixcap.table_offset & MSIX_TABLE_BIR_MASK;
pi->pi_msix.table_offset = msixcap.table_offset & MSIX_TABLE_OFFSET_MASK;
pi->pi_msix.table_count = MSIX_TABLE_COUNT(msixcap.msgctrl);
#ifdef LEGACY_SUPPORT
/*
* If the passthrough device does not support MSI then craft a
@ -208,12 +245,182 @@ cfginitmsi(struct passthru_softc *sc)
}
#endif
if (sc->psc_msi.capoff == 0) /* MSI or bust */
/* Make sure one of the capabilities is present */
if (sc->psc_msi.capoff == 0 && sc->psc_msix.capoff == 0)
return (-1);
else
return (0);
}
static int
msix_table_read(struct vmctx *vm, int vcpu, uintptr_t addr,
int size, uint64_t *data, void *arg)
{
struct passthru_softc *sc;
struct pci_devinst *pi;
int index;
size_t offset, entry_offset;
uint8_t *src8;
uint16_t *src16;
uint32_t *src32;
uint64_t *src64;
struct msix_table_entry *entry;
sc = arg;
pi = sc->psc_pi;
offset = addr - pi->pi_msix.table_gpa;
entry_offset = addr % MSIX_TABLE_ENTRY_SIZE;
index = offset / MSIX_TABLE_ENTRY_SIZE;
entry = &pi->pi_msix.table[index];
switch(size) {
case 1:
src8 = (uint8_t*)((void*)entry + entry_offset);
*data = *src8;
break;
case 2:
src16 = (uint16_t*)((void*)entry + entry_offset);
*data = *src16;
break;
case 4:
src32 = (uint32_t*)((void*)entry + entry_offset);
*data = *src32;
break;
case 8:
src64 = (uint64_t*)((void*)entry + entry_offset);
*data = *src64;
break;
default:
return (-1);
}
return (0);
}
static int
msix_table_write(struct vmctx *vm, int vcpu, uintptr_t addr,
int size, uint64_t data, void *arg)
{
struct passthru_softc *sc;
struct pci_devinst *pi;
int error, index;
size_t offset, entry_offset;
uint32_t *dest;
struct msix_table_entry *entry;
uint32_t vector_control;
sc = arg;
pi = sc->psc_pi;
offset = addr - pi->pi_msix.table_gpa;
entry_offset = addr % MSIX_TABLE_ENTRY_SIZE;
index = offset / MSIX_TABLE_ENTRY_SIZE;
entry = &pi->pi_msix.table[index];
/* Only 4 byte naturally-aligned writes are supported */
if (size == 4 && entry_offset % 4 == 0) {
vector_control = entry->vector_control;
dest = (uint32_t*)((void*)entry + entry_offset);
*dest = data;
/* If MSI-X hasn't been enabled, do nothing */
if (pi->pi_msix.enabled) {
/* If the entry is masked, don't set it up */
if ((entry->vector_control & PCIM_MSIX_VCTRL_MASK) == 0 ||
(vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
error = vm_setup_msix(vm, vcpu, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev,
sc->psc_sel.pc_func,
index, entry->msg_data,
entry->vector_control,
entry->addr);
if (error)
return (-1);
}
}
} else {
printf("Unsupported unaligned or non-4-byte write to MSI-X table\n");
return (-1);
}
return (0);
}
static int
msix_bar_handler(struct pci_devinst *pdi, int idx, uint64_t bar)
{
uintptr_t start;
start = (bar & PCIM_BAR_MEM_BASE) + pdi->pi_msix.table_offset;
move_memory_region(pdi->pi_msix.table_bar_region, start);
pdi->pi_msix.table_gpa = start;
return (0);
}
static int
init_msix_table(struct vmctx *ctx, struct passthru_softc *sc, uint64_t base)
{
int idx;
size_t table_size;
vm_paddr_t start;
size_t len;
struct pci_devinst *pi = sc->psc_pi;
/*
* If the MSI-X table BAR maps memory intended for
* other uses, it is at least assured that the table
* either resides in its own page within the region,
* or it resides in a page shared with only the PBA.
*/
if (pi->pi_msix.pba_bar == pi->pi_msix.table_bar &&
((pi->pi_msix.pba_offset - pi->pi_msix.table_offset) < 4096)) {
/* Need to also emulate the PBA, not supported yet */
printf("Unsupported MSI-X table and PBA in same page\n");
return (-1);
}
/*
* May need to split the BAR into 3 regions:
* Before the MSI-X table, the MSI-X table, and after it
* XXX for now, assume that the table is not in the middle
*/
table_size = pi->pi_msix.table_count * MSIX_TABLE_ENTRY_SIZE;
pi->pi_msix.table_size = table_size;
idx = pi->pi_msix.table_bar;
/* Round up to page size */
table_size = (table_size + 0x1000) & ~0xFFF;
if (pi->pi_msix.table_offset == 0) {
/* Map everything after the MSI-X table */
start = pi->pi_bar[idx].addr + table_size;
len = pi->pi_bar[idx].size - table_size;
} else {
/* Map everything before the MSI-X table */
start = pi->pi_bar[idx].addr;
len = pi->pi_msix.table_offset;
}
return vm_map_pptdev_mmio(ctx, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev, sc->psc_sel.pc_func,
start, len, base + table_size);
}
static int
cfginitmsix(struct passthru_softc *sc)
{
int table_bar;
struct pci_devinst *pi;
pi = sc->psc_pi;
table_bar = pi->pi_msix.table_bar;
pi->pi_msix.table_gpa = sc->psc_bar[table_bar].addr + pi->pi_msix.table_offset;
pi->pi_msix.table_bar_region = register_emulated_memory(pi->pi_msix.table_gpa,
pi->pi_msix.table_size,
msix_table_read,
msix_table_write, sc);
if (!pi->pi_msix.table_bar_region)
return (-1);
pi->pi_bar[table_bar].handler = msix_bar_handler;
return (0);
}
static int
cfginitbar(struct vmctx *ctx, struct passthru_softc *sc)
{
@ -262,10 +469,13 @@ cfginitbar(struct vmctx *ctx, struct passthru_softc *sc)
if (error)
return (-1);
/*
* Map the physical MMIO space in the guest MMIO space
*/
if (bartype != PCIBAR_IO) {
/* The MSI-X table needs special handling */
if (i == pi->pi_msix.table_bar) {
error = init_msix_table(ctx, sc, base);
if (error)
return (-1);
} else if (bartype != PCIBAR_IO) {
/* Map the physical MMIO space in the guest MMIO space */
error = vm_map_pptdev_mmio(ctx, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev, sc->psc_sel.pc_func,
pi->pi_bar[i].addr, pi->pi_bar[i].size, base);
@ -299,10 +509,13 @@ cfginit(struct vmctx *ctx, struct pci_devinst *pi, int bus, int slot, int func)
sc->psc_sel.pc_dev = slot;
sc->psc_sel.pc_func = func;
if (cfginitmsi(sc) != 0)
goto done;
if (cfginitbar(ctx, sc) != 0)
goto done;
if (cfginitmsi(sc) != 0)
if (cfginitmsix(sc) != 0)
goto done;
error = 0; /* success */
@ -381,6 +594,16 @@ msicap_access(struct passthru_softc *sc, int coff)
return (0);
}
static int
msixcap_access(struct passthru_softc *sc, int coff)
{
if (sc->psc_msix.capoff == 0)
return (0);
return (coff >= sc->psc_msix.capoff &&
coff < sc->psc_msix.capoff + MSIX_CAPLEN);
}
static int
passthru_cfgread(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int coff,
int bytes, uint32_t *rv)
@ -416,7 +639,7 @@ static int
passthru_cfgwrite(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int coff,
int bytes, uint32_t val)
{
int error;
int error, msix_table_entries, i;
struct passthru_softc *sc;
sc = pi->pi_arg;
@ -443,6 +666,27 @@ passthru_cfgwrite(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int coff,
return (0);
}
if (msixcap_access(sc, coff)) {
msixcap_cfgwrite(pi, sc->psc_msix.capoff, coff, bytes, val);
if (pi->pi_msix.enabled) {
msix_table_entries = pi->pi_msix.table_count;
for (i = 0; i < msix_table_entries; i++) {
error = vm_setup_msix(ctx, vcpu, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev,
sc->psc_sel.pc_func, i,
pi->pi_msix.table[i].msg_data,
pi->pi_msix.table[i].vector_control,
pi->pi_msix.table[i].addr);
if (error) {
printf("vm_setup_msix returned error %d\r\n", errno);
exit(1);
}
}
}
return (0);
}
#ifdef LEGACY_SUPPORT
/*
* If this device does not support MSI natively then we cannot let