rb_tree: reduce duplication in balancing code

Change RB_INSERT_COLOR and RB_REMOVE_COLOR so that the blocks of code
that are identical except for left and right being exchanged are made
only one block with a variable to indicate left- or right-handedness.

Rename RB macros so that those not intended for external use begin
with an underscore.

Add comments to the balancing code so that another might understand it.

Reviewed by:	alc, kib
MFC after:	3 weeks
Differential Revision:	https://reviews.freebsd.org/D36393
This commit is contained in:
Doug Moore 2022-09-07 23:46:19 -05:00
parent 6f7b1310b6
commit d0354fa7b6
3 changed files with 224 additions and 231 deletions

View File

@ -41,8 +41,8 @@
struct rb_node {
RB_ENTRY(rb_node) __entry;
};
#define rb_left __entry.rbe_left
#define rb_right __entry.rbe_right
#define rb_left __entry.rbe_link[_RB_L]
#define rb_right __entry.rbe_link[_RB_R]
/*
* We provide a false structure that has the same bit pattern as tree.h
@ -134,10 +134,10 @@ rb_replace_node(struct rb_node *victim, struct rb_node *new,
RB_SWAP_CHILD((struct linux_root *)root, rb_parent(victim),
victim, new, __entry);
if (victim->rb_left)
RB_SET_PARENT(victim->rb_left, new, __entry);
if (victim->rb_right)
RB_SET_PARENT(victim->rb_right, new, __entry);
if (RB_LEFT(victim, __entry))
RB_SET_PARENT(RB_LEFT(victim, __entry), new, __entry);
if (RB_RIGHT(victim, __entry))
RB_SET_PARENT(RB_RIGHT(victim, __entry), new, __entry);
*new = *victim;
}

View File

@ -3411,8 +3411,8 @@ stats_v1_vsd_tdgst_add(enum vsd_dtype vs_dtype, struct voistatdata_tdgst *tdgst,
int rb_color =
parent == NULL ? 0 :
RB_LEFT(parent, rblnk) == rbctd64 ?
(RB_BITS(parent, rblnk) & RB_RED_L) != 0 :
(RB_BITS(parent, rblnk) & RB_RED_R) != 0;
(_RB_BITSUP(parent, rblnk) & _RB_L) != 0 :
(_RB_BITSUP(parent, rblnk) & _RB_R) != 0;
printf(" RB ctd=%3d p=%3d l=%3d r=%3d c=%2d "
"mu=%s\n",
(int)ARB_SELFIDX(ctd64tree, rbctd64),

View File

@ -56,9 +56,11 @@
* the same, and defines the rank of that node. The rank of the null node
* is -1.
*
* Different additional conditions define different sorts of balanced
* trees, including "red-black" and "AVL" trees. The set of conditions
* applied here are the "weak-AVL" conditions of Haeupler, Sen and Tarjan:
* Different additional conditions define different sorts of balanced trees,
* including "red-black" and "AVL" trees. The set of conditions applied here
* are the "weak-AVL" conditions of Haeupler, Sen and Tarjan presented in in
* "Rank Balanced Trees", ACM Transactions on Algorithms Volume 11 Issue 4 June
* 2015 Article No.: 30pp 126 https://doi.org/10.1145/2689412 (the HST paper):
* - every rank-difference is 1 or 2.
* - the rank of any leaf is 1.
*
@ -318,14 +320,9 @@ struct name { \
#define RB_ENTRY(type) \
struct { \
struct type *rbe_left; /* left element */ \
struct type *rbe_right; /* right element */ \
struct type *rbe_parent; /* parent element */ \
struct type *rbe_link[3]; \
}
#define RB_LEFT(elm, field) (elm)->field.rbe_left
#define RB_RIGHT(elm, field) (elm)->field.rbe_right
/*
* With the expectation that any object of struct type has an
* address that is a multiple of 4, and that therefore the
@ -333,27 +330,29 @@ struct { \
* always zero, this implementation sets those bits to indicate
* that the left or right child of the tree node is "red".
*/
#define RB_UP(elm, field) (elm)->field.rbe_parent
#define RB_BITS(elm, field) (*(__uintptr_t *)&RB_UP(elm, field))
#define RB_RED_L ((__uintptr_t)1)
#define RB_RED_R ((__uintptr_t)2)
#define RB_RED_MASK ((__uintptr_t)3)
#define RB_FLIP_LEFT(elm, field) (RB_BITS(elm, field) ^= RB_RED_L)
#define RB_FLIP_RIGHT(elm, field) (RB_BITS(elm, field) ^= RB_RED_R)
#define RB_FLIP_ALL(elm, field) (RB_BITS(elm, field) ^= RB_RED_MASK)
#define _RB_PARENT_ONLY(elm) (__typeof(elm)) \
((__uintptr_t)elm & ~RB_RED_MASK)
#define RB_PARENT(elm, field) _RB_PARENT_ONLY(RB_UP(elm, field))
#define _RB_LINK(elm, dir, field) (elm)->field.rbe_link[dir]
#define _RB_UP(elm, field) _RB_LINK(elm, 0, field)
#define _RB_L ((__uintptr_t)1)
#define _RB_R ((__uintptr_t)2)
#define _RB_LR ((__uintptr_t)3)
#define _RB_BITS(elm) (*(__uintptr_t *)&elm)
#define _RB_BITSUP(elm, field) _RB_BITS(_RB_UP(elm, field))
#define _RB_PTR(elm) (__typeof(elm)) \
((__uintptr_t)elm & ~_RB_LR)
#define RB_PARENT(elm, field) _RB_PTR(_RB_UP(elm, field))
#define RB_LEFT(elm, field) _RB_LINK(elm, _RB_L, field)
#define RB_RIGHT(elm, field) _RB_LINK(elm, _RB_R, field)
#define RB_ROOT(head) (head)->rbh_root
#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
#define RB_SET_PARENT(dst, src, field) do { \
RB_BITS(dst, field) = (__uintptr_t)src | \
(RB_BITS(dst, field) & RB_RED_MASK); \
_RB_BITSUP(dst, field) = (__uintptr_t)src | \
(_RB_BITSUP(dst, field) & _RB_LR); \
} while (/*CONSTCOND*/ 0)
#define RB_SET(elm, parent, field) do { \
RB_UP(elm, field) = parent; \
_RB_UP(elm, field) = parent; \
RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
} while (/*CONSTCOND*/ 0)
@ -382,31 +381,20 @@ struct { \
} while (/*CONSTCOND*/ 0)
/*
* RB_ROTATE macros partially restructure the tree to improve
* balance. The ROTATE_RIGHT case is just a reflection of the
* ROTATE_LEFT case. Initially, tmp is a right child of elm. After
* rotation, elm is a left child of tmp, and the subtree that
* represented the items between them, which formerly hung to the left
* of tmp now hangs to the right of elm. The parent-child
* relationship between elm and its former parent is not changed;
* where this macro once updated those fields, that is now left to the
* caller of RB_ROTATE to clean up, so that a pair of rotations does
* not twice update the same pair of pointer fields with distinct
* values.
* RB_ROTATE macro partially restructures the tree to improve balance. In the
* case when dir is _RB_L, tmp is a right child of elm. After rotation, elm
* is a left child of tmp, and the subtree that represented the items between
* them, which formerly hung to the left of tmp now hangs to the right of elm.
* The parent-child relationship between elm and its former parent is not
* changed; where this macro once updated those fields, that is now left to the
* caller of RB_ROTATE to clean up, so that a pair of rotations does not twice
* update the same pair of pointer fields with distinct values.
*/
#define RB_ROTATE_LEFT(elm, tmp, field) do { \
if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \
RB_SET_PARENT(RB_RIGHT(elm, field), elm, field); \
} \
RB_LEFT(tmp, field) = (elm); \
RB_SET_PARENT(elm, tmp, field); \
} while (/*CONSTCOND*/ 0)
#define RB_ROTATE_RIGHT(elm, tmp, field) do { \
if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \
RB_SET_PARENT(RB_LEFT(elm, field), elm, field); \
} \
RB_RIGHT(tmp, field) = (elm); \
#define RB_ROTATE(elm, tmp, dir, field) do { \
if ((_RB_LINK(elm, dir ^ _RB_LR, field) = \
_RB_LINK(tmp, dir, field)) != NULL) \
RB_SET_PARENT(_RB_LINK(tmp, dir, field), elm, field); \
_RB_LINK(tmp, dir, field) = (elm); \
RB_SET_PARENT(elm, tmp, field); \
} while (/*CONSTCOND*/ 0)
@ -484,17 +472,18 @@ struct { \
attr int \
name##_RB_RANK(struct type *elm) \
{ \
struct type *left, *right; \
struct type *left, *right, *up; \
int left_rank, right_rank; \
__uintptr_t bits; \
\
if (elm == NULL) \
return (0); \
bits = RB_BITS(elm, field); \
up = _RB_UP(elm, field); \
left = RB_LEFT(elm, field); \
left_rank = ((bits & RB_RED_L) ? 2 : 1) + name##_RB_RANK(left); \
left_rank = ((_RB_BITS(up) & _RB_L) ? 2 : 1) + \
name##_RB_RANK(left); \
right = RB_RIGHT(elm, field); \
right_rank = ((bits & RB_RED_R) ? 2 : 1) + name##_RB_RANK(right); \
right_rank = ((_RB_BITS(up) & _RB_R) ? 2 : 1) + \
name##_RB_RANK(right); \
if (left_rank != right_rank || \
(left_rank == 2 && left == NULL && right == NULL)) \
return (-1); \
@ -518,72 +507,82 @@ name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
* uninitialized 'child', and a later iteration can only happen \
* when a value has been assigned to 'child' in the previous \
* one. \
*/ \
struct type *child, *gpar = RB_UP(elm, field), *parent; \
__uintptr_t red; \
*/ \
struct type *child, *child_up, *gpar, *parent; \
__uintptr_t elmdir, sibdir; \
\
gpar = _RB_UP(elm, field); \
while ((parent = gpar) != NULL) { \
red = RB_BITS(parent, field); \
gpar = RB_UP(parent, field); \
if (RB_LEFT(parent, field) == elm) { \
if (red & RB_RED_L) { \
RB_FLIP_LEFT(parent, field); \
return; \
} \
RB_FLIP_RIGHT(parent, field); \
if ((red & RB_RED_MASK) == 0) { \
child = elm; \
elm = parent; \
continue; \
} \
red = RB_BITS(elm, field); \
if (red & RB_RED_R) \
child = elm; \
else { \
/* coverity[uninit_use] */ \
RB_ROTATE_LEFT(elm, child, field); \
red = RB_BITS(child, field); \
if (red & RB_RED_R) \
RB_FLIP_LEFT(parent, field); \
if (red & RB_RED_L) \
RB_FLIP_ALL(elm, field); \
else \
RB_FLIP_LEFT(elm, field); \
if ((red & RB_RED_MASK) == 0) \
elm = child; \
} \
RB_ROTATE_RIGHT(parent, child, field); \
} else { \
if (red & RB_RED_R) { \
RB_FLIP_RIGHT(parent, field); \
return; \
} \
RB_FLIP_LEFT(parent, field); \
if ((red & RB_RED_MASK) == 0) { \
child = elm; \
elm = parent; \
continue; \
} \
red = RB_BITS(elm, field); \
if (red & RB_RED_L) \
child = elm; \
else { \
/* coverity[uninit_use] */ \
RB_ROTATE_RIGHT(elm, child, field); \
red = RB_BITS(child, field); \
if (red & RB_RED_L) \
RB_FLIP_RIGHT(parent, field); \
if (red & RB_RED_R) \
RB_FLIP_ALL(elm, field); \
else \
RB_FLIP_RIGHT(elm, field); \
if ((red & RB_RED_MASK) == 0) \
elm = child; \
} \
RB_ROTATE_LEFT(parent, child, field); \
/* the rank of the tree rooted at elm grew */ \
gpar = _RB_UP(parent, field); \
elmdir = RB_RIGHT(parent, field) == elm ? _RB_R : _RB_L; \
if (_RB_BITS(gpar) & elmdir) { \
/* shorten the parent-elm edge to rebalance */ \
_RB_BITSUP(parent, field) ^= elmdir; \
return; \
} \
gpar = _RB_PARENT_ONLY(gpar); \
RB_UP(child, field) = gpar; \
sibdir = elmdir ^ _RB_LR; \
/* the other edge must change length */ \
_RB_BITSUP(parent, field) ^= sibdir; \
if ((_RB_BITS(gpar) & _RB_LR) == 0) { \
/* both edges now short, retry from parent */ \
child = elm; \
elm = parent; \
continue; \
} \
_RB_UP(parent, field) = gpar = _RB_PTR(gpar); \
if (_RB_BITSUP(elm, field) & elmdir) { \
/* \
* Exactly one of the edges descending from elm \
* is long. The long one is in the same \
* direction as the edge from parent to elm, \
* so change that by rotation. The edge from \
* parent to z was shortened above. Shorten \
* the long edge down from elm, and adjust \
* other edge lengths based on the downward \
* edges from 'child'. \
* \
* par par \
* / \ / \ \
* elm z / z \
* / \ child \
* / child / \ \
* / / \ elm \ \
* w / \ / \ y \
* x y w \ \
* x \
*/ \
RB_ROTATE(elm, child, elmdir, field); \
child_up = _RB_UP(child, field); \
if (_RB_BITS(child_up) & sibdir) \
_RB_BITSUP(parent, field) ^= elmdir; \
if (_RB_BITS(child_up) & elmdir) \
_RB_BITSUP(elm, field) ^= _RB_LR; \
else \
_RB_BITSUP(elm, field) ^= elmdir; \
/* if child is a leaf, don't augment elm, \
* since it is restored to be a leaf again. */ \
if ((_RB_BITS(child_up) & _RB_LR) == 0) \
elm = child; \
} else \
child = elm; \
\
/* \
* The long edge descending from 'child' points back \
* in the direction of 'parent'. Rotate to make \
* 'parent' a child of 'child', then make both edges \
* of 'child' short to rebalance. \
* \
* par child \
* / \ / \ \
* / z x par \
* child / \ \
* / \ / z \
* x \ y \
* y \
*/ \
RB_ROTATE(parent, child, sibdir, field); \
_RB_UP(child, field) = gpar; \
RB_SWAP_CHILD(head, gpar, parent, child, field); \
if (elm != child) \
RB_AUGMENT(elm); \
@ -608,120 +607,112 @@ attr void \
name##_RB_REMOVE_COLOR(struct name *head, \
struct type *parent, struct type *elm) \
{ \
struct type *gpar, *sib; \
__uintptr_t red; \
struct type *gpar, *sib, *up; \
__uintptr_t elmdir, sibdir; \
\
if (RB_LEFT(parent, field) == elm && \
RB_RIGHT(parent, field) == elm) { \
RB_BITS(parent, field) &= ~RB_RED_MASK; \
if (RB_RIGHT(parent, field) == elm && \
RB_LEFT(parent, field) == elm) { \
/* Deleting a leaf that is an only-child creates a \
* rank-2 leaf. Demote that leaf. */ \
_RB_UP(parent, field) = _RB_PTR(_RB_UP(parent, field)); \
elm = parent; \
parent = RB_PARENT(elm, field); \
if (parent == NULL) \
if ((parent = _RB_UP(elm, field)) == NULL) \
return; \
} \
do { \
red = RB_BITS(parent, field); \
gpar = RB_UP(parent, field); \
if (RB_LEFT(parent, field) == elm) { \
if (~red & RB_RED_L) { \
RB_FLIP_LEFT(parent, field); \
return; \
} \
if ((~red & RB_RED_MASK) == 0) { \
RB_FLIP_RIGHT(parent, field); \
elm = parent; \
continue; \
} \
sib = RB_RIGHT(parent, field); \
red = RB_BITS(sib, field); \
switch (red & RB_RED_MASK) { \
case RB_RED_MASK: \
RB_FLIP_ALL(sib, field); \
elm = parent; \
continue; \
case RB_RED_R: \
elm = RB_LEFT(sib, field); \
RB_ROTATE_RIGHT(sib, elm, field); \
red = RB_BITS(elm, field); \
if (red & RB_RED_L) \
RB_FLIP_ALL(parent, field); \
else \
RB_FLIP_LEFT(parent, field); \
if (red & RB_RED_R) \
RB_FLIP_ALL(sib, field); \
else \
RB_FLIP_RIGHT(sib, field); \
RB_BITS(elm, field) |= RB_RED_MASK; \
break; \
case RB_RED_L: \
if (RB_STRICT_HST && elm != NULL) { \
RB_FLIP_RIGHT(parent, field); \
RB_FLIP_ALL(sib, field); \
elm = sib; \
break; \
} \
RB_FLIP_LEFT(parent, field); \
/* FALLTHROUGH */ \
default: \
RB_FLIP_RIGHT(sib, field); \
elm = sib; \
break; \
} \
RB_ROTATE_LEFT(parent, elm, field); \
} else { \
if (~red & RB_RED_R) { \
RB_FLIP_RIGHT(parent, field); \
return; \
} \
if ((~red & RB_RED_MASK) == 0) { \
RB_FLIP_LEFT(parent, field); \
elm = parent; \
continue; \
} \
sib = RB_LEFT(parent, field); \
red = RB_BITS(sib, field); \
switch (red & RB_RED_MASK) { \
case RB_RED_MASK: \
RB_FLIP_ALL(sib, field); \
elm = parent; \
continue; \
case RB_RED_L: \
elm = RB_RIGHT(sib, field); \
RB_ROTATE_LEFT(sib, elm, field); \
red = RB_BITS(elm, field); \
if (red & RB_RED_R) \
RB_FLIP_ALL(parent, field); \
else \
RB_FLIP_RIGHT(parent, field); \
if (red & RB_RED_L) \
RB_FLIP_ALL(sib, field); \
else \
RB_FLIP_LEFT(sib, field); \
RB_BITS(elm, field) |= RB_RED_MASK; \
break; \
case RB_RED_R: \
if (RB_STRICT_HST && elm != NULL) { \
RB_FLIP_LEFT(parent, field); \
RB_FLIP_ALL(sib, field); \
elm = sib; \
break; \
} \
RB_FLIP_RIGHT(parent, field); \
/* FALLTHROUGH */ \
default: \
RB_FLIP_LEFT(sib, field); \
elm = sib; \
break; \
} \
RB_ROTATE_RIGHT(parent, elm, field); \
/* the rank of the tree rooted at elm shrank */ \
gpar = _RB_UP(parent, field); \
elmdir = RB_RIGHT(parent, field) == elm ? _RB_R : _RB_L; \
_RB_BITS(gpar) ^= elmdir; \
if (_RB_BITS(gpar) & elmdir) { \
/* lengthen the parent-elm edge to rebalance */ \
_RB_UP(parent, field) = gpar; \
return; \
} \
gpar = _RB_PARENT_ONLY(gpar); \
if (_RB_BITS(gpar) & _RB_LR) { \
/* shorten other edge, retry from parent */ \
_RB_BITS(gpar) ^= _RB_LR; \
_RB_UP(parent, field) = gpar; \
gpar = _RB_PTR(gpar); \
continue; \
} \
sibdir = elmdir ^ _RB_LR; \
sib = _RB_LINK(parent, sibdir, field); \
up = _RB_UP(sib, field); \
_RB_BITS(up) ^= _RB_LR; \
if ((_RB_BITS(up) & _RB_LR) == 0) { \
/* shorten edges descending from sib, retry */ \
_RB_UP(sib, field) = up; \
continue; \
} \
if ((_RB_BITS(up) & sibdir) == 0) { \
/* \
* The edge descending from 'sib' away from \
* 'parent' is long. The short edge descending \
* from 'sib' toward 'parent' points to 'elm*' \
* Rotate to make 'sib' a child of 'elm*' \
* then adjust the lengths of the edges \
* descending from 'sib' and 'elm*'. \
* \
* par par \
* / \ / \ \
* / sib elm \ \
* / / \ elm* \
* elm elm* \ / \ \
* / \ \ / \ \
* / \ z / \ \
* x y x sib \
* / \ \
* / z \
* y \
*/ \
elm = _RB_LINK(sib, elmdir, field); \
/* elm is a 1-child. First rotate at elm. */ \
RB_ROTATE(sib, elm, sibdir, field); \
up = _RB_UP(elm, field); \
_RB_BITSUP(parent, field) ^= \
(_RB_BITS(up) & elmdir) ? _RB_LR : elmdir; \
_RB_BITSUP(sib, field) ^= \
(_RB_BITS(up) & sibdir) ? _RB_LR : sibdir; \
_RB_BITSUP(elm, field) |= _RB_LR; \
} else { \
if ((_RB_BITS(up) & elmdir) == 0 && \
RB_STRICT_HST && elm != NULL) { \
/* if parent does not become a leaf, \
do not demote parent yet. */ \
_RB_BITSUP(parent, field) ^= sibdir; \
_RB_BITSUP(sib, field) ^= _RB_LR; \
} else if ((_RB_BITS(up) & elmdir) == 0) { \
/* demote parent. */ \
_RB_BITSUP(parent, field) ^= elmdir; \
_RB_BITSUP(sib, field) ^= sibdir; \
} else \
_RB_BITSUP(sib, field) ^= sibdir; \
elm = sib; \
} \
\
/* \
* The edge descending from 'elm' away from 'parent' \
* is short. Rotate to make 'parent' a child of 'elm', \
* then lengthen the short edges descending from \
* 'parent' and 'elm' to rebalance. \
* \
* par elm \
* / \ / \ \
* e \ / \ \
* elm / \ \
* / \ par s \
* / \ / \ \
* / \ e \ \
* x s x \
*/ \
RB_ROTATE(parent, elm, elmdir, field); \
RB_SET_PARENT(elm, gpar, field); \
RB_SWAP_CHILD(head, gpar, parent, elm, field); \
if (sib != elm) \
RB_AUGMENT(sib); \
break; \
} while ((parent = _RB_PARENT_ONLY(gpar)) != NULL); \
} while (elm = parent, (parent = gpar) != NULL); \
}
#define RB_GENERATE_REMOVE(name, type, field, attr) \
@ -732,10 +723,10 @@ name##_RB_REMOVE(struct name *head, struct type *out) \
\
child = RB_LEFT(out, field); \
in = RB_RIGHT(out, field); \
opar = RB_UP(out, field); \
opar = _RB_UP(out, field); \
if (in == NULL || child == NULL) { \
in = child = in == NULL ? child : in; \
parent = opar = _RB_PARENT_ONLY(opar); \
parent = opar = _RB_PTR(opar); \
} else { \
parent = in; \
while (RB_LEFT(in, field)) \
@ -749,14 +740,16 @@ name##_RB_REMOVE(struct name *head, struct type *out) \
parent = RB_PARENT(in, field); \
RB_LEFT(parent, field) = child; \
} \
RB_UP(in, field) = opar; \
opar = _RB_PARENT_ONLY(opar); \
_RB_UP(in, field) = opar; \
opar = _RB_PTR(opar); \
} \
RB_SWAP_CHILD(head, opar, out, in, field); \
if (child != NULL) \
RB_UP(child, field) = parent; \
_RB_UP(child, field) = parent; \
if (parent != NULL) { \
name##_RB_REMOVE_COLOR(head, parent, child); \
/* if rotation has made 'parent' the root of the same \
* subtree as before, don't re-augment it. */ \
if (parent == in && RB_LEFT(parent, field) == NULL) \
parent = RB_PARENT(parent, field); \
RB_UPDATE_AUGMENT(parent, field); \