Move some common code from sys/amd64/amd64/machdep.c and

sys/i386/i386/machdep.c to new file sys/x86/x86/cpu_machdep.c.  Most
of the code is related to the idle handling.

Discussed with:	pluknet
Sponsored by:	The FreeBSD Foundation
This commit is contained in:
Konstantin Belousov 2015-04-22 12:32:14 +00:00
parent 6c2d9cea22
commit dfe7b3bfbc
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=281851
8 changed files with 538 additions and 790 deletions

View File

@ -578,375 +578,6 @@ freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
}
#endif
/*
* Machine dependent boot() routine
*
* I haven't seen anything to put here yet
* Possibly some stuff might be grafted back here from boot()
*/
void
cpu_boot(int howto)
{
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* Not applicable */
}
/* Get current clock frequency for the given cpu id. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
uint64_t tsc1, tsc2;
uint64_t acnt, mcnt, perf;
register_t reg;
if (pcpu_find(cpu_id) == NULL || rate == NULL)
return (EINVAL);
/*
* If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
* DELAY(9) based logic fails.
*/
if (tsc_is_invariant && !tsc_perf_stat)
return (EOPNOTSUPP);
#ifdef SMP
if (smp_cpus > 1) {
/* Schedule ourselves on the indicated cpu. */
thread_lock(curthread);
sched_bind(curthread, cpu_id);
thread_unlock(curthread);
}
#endif
/* Calibrate by measuring a short delay. */
reg = intr_disable();
if (tsc_is_invariant) {
wrmsr(MSR_MPERF, 0);
wrmsr(MSR_APERF, 0);
tsc1 = rdtsc();
DELAY(1000);
mcnt = rdmsr(MSR_MPERF);
acnt = rdmsr(MSR_APERF);
tsc2 = rdtsc();
intr_restore(reg);
perf = 1000 * acnt / mcnt;
*rate = (tsc2 - tsc1) * perf;
} else {
tsc1 = rdtsc();
DELAY(1000);
tsc2 = rdtsc();
intr_restore(reg);
*rate = (tsc2 - tsc1) * 1000;
}
#ifdef SMP
if (smp_cpus > 1) {
thread_lock(curthread);
sched_unbind(curthread);
thread_unlock(curthread);
}
#endif
return (0);
}
/*
* Shutdown the CPU as much as possible
*/
void
cpu_halt(void)
{
for (;;)
halt();
}
void (*cpu_idle_hook)(sbintime_t) = NULL; /* ACPI idle hook. */
static int cpu_ident_amdc1e = 0; /* AMD C1E supported. */
static int idle_mwait = 1; /* Use MONITOR/MWAIT for short idle. */
SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait,
0, "Use MONITOR/MWAIT for short idle");
#define STATE_RUNNING 0x0
#define STATE_MWAIT 0x1
#define STATE_SLEEPING 0x2
static void
cpu_idle_acpi(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_SLEEPING;
/* See comments in cpu_idle_hlt(). */
disable_intr();
if (sched_runnable())
enable_intr();
else if (cpu_idle_hook)
cpu_idle_hook(sbt);
else
__asm __volatile("sti; hlt");
*state = STATE_RUNNING;
}
static void
cpu_idle_hlt(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_SLEEPING;
/*
* Since we may be in a critical section from cpu_idle(), if
* an interrupt fires during that critical section we may have
* a pending preemption. If the CPU halts, then that thread
* may not execute until a later interrupt awakens the CPU.
* To handle this race, check for a runnable thread after
* disabling interrupts and immediately return if one is
* found. Also, we must absolutely guarentee that hlt is
* the next instruction after sti. This ensures that any
* interrupt that fires after the call to disable_intr() will
* immediately awaken the CPU from hlt. Finally, please note
* that on x86 this works fine because of interrupts enabled only
* after the instruction following sti takes place, while IF is set
* to 1 immediately, allowing hlt instruction to acknowledge the
* interrupt.
*/
disable_intr();
if (sched_runnable())
enable_intr();
else
__asm __volatile("sti; hlt");
*state = STATE_RUNNING;
}
static void
cpu_idle_mwait(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_MWAIT;
/* See comments in cpu_idle_hlt(). */
disable_intr();
if (sched_runnable()) {
enable_intr();
*state = STATE_RUNNING;
return;
}
cpu_monitor(state, 0, 0);
if (*state == STATE_MWAIT)
__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
else
enable_intr();
*state = STATE_RUNNING;
}
static void
cpu_idle_spin(sbintime_t sbt)
{
int *state;
int i;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_RUNNING;
/*
* The sched_runnable() call is racy but as long as there is
* a loop missing it one time will have just a little impact if any
* (and it is much better than missing the check at all).
*/
for (i = 0; i < 1000; i++) {
if (sched_runnable())
return;
cpu_spinwait();
}
}
/*
* C1E renders the local APIC timer dead, so we disable it by
* reading the Interrupt Pending Message register and clearing
* both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
*
* Reference:
* "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
* #32559 revision 3.00+
*/
#define MSR_AMDK8_IPM 0xc0010055
#define AMDK8_SMIONCMPHALT (1ULL << 27)
#define AMDK8_C1EONCMPHALT (1ULL << 28)
#define AMDK8_CMPHALT (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
static void
cpu_probe_amdc1e(void)
{
/*
* Detect the presence of C1E capability mostly on latest
* dual-cores (or future) k8 family.
*/
if (cpu_vendor_id == CPU_VENDOR_AMD &&
(cpu_id & 0x00000f00) == 0x00000f00 &&
(cpu_id & 0x0fff0000) >= 0x00040000) {
cpu_ident_amdc1e = 1;
}
}
void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
void
cpu_idle(int busy)
{
uint64_t msr;
sbintime_t sbt = -1;
CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
busy, curcpu);
#ifdef MP_WATCHDOG
ap_watchdog(PCPU_GET(cpuid));
#endif
/* If we are busy - try to use fast methods. */
if (busy) {
if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
cpu_idle_mwait(busy);
goto out;
}
}
/* If we have time - switch timers into idle mode. */
if (!busy) {
critical_enter();
sbt = cpu_idleclock();
}
/* Apply AMD APIC timer C1E workaround. */
if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
msr = rdmsr(MSR_AMDK8_IPM);
if (msr & AMDK8_CMPHALT)
wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
}
/* Call main idle method. */
cpu_idle_fn(sbt);
/* Switch timers back into active mode. */
if (!busy) {
cpu_activeclock();
critical_exit();
}
out:
CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
busy, curcpu);
}
int
cpu_idle_wakeup(int cpu)
{
struct pcpu *pcpu;
int *state;
pcpu = pcpu_find(cpu);
state = (int *)pcpu->pc_monitorbuf;
/*
* This doesn't need to be atomic since missing the race will
* simply result in unnecessary IPIs.
*/
if (*state == STATE_SLEEPING)
return (0);
if (*state == STATE_MWAIT)
*state = STATE_RUNNING;
return (1);
}
/*
* Ordered by speed/power consumption.
*/
struct {
void *id_fn;
char *id_name;
} idle_tbl[] = {
{ cpu_idle_spin, "spin" },
{ cpu_idle_mwait, "mwait" },
{ cpu_idle_hlt, "hlt" },
{ cpu_idle_acpi, "acpi" },
{ NULL, NULL }
};
static int
idle_sysctl_available(SYSCTL_HANDLER_ARGS)
{
char *avail, *p;
int error;
int i;
avail = malloc(256, M_TEMP, M_WAITOK);
p = avail;
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (strstr(idle_tbl[i].id_name, "mwait") &&
(cpu_feature2 & CPUID2_MON) == 0)
continue;
if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
cpu_idle_hook == NULL)
continue;
p += sprintf(p, "%s%s", p != avail ? ", " : "",
idle_tbl[i].id_name);
}
error = sysctl_handle_string(oidp, avail, 0, req);
free(avail, M_TEMP);
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
0, 0, idle_sysctl_available, "A", "list of available idle functions");
static int
idle_sysctl(SYSCTL_HANDLER_ARGS)
{
char buf[16];
int error;
char *p;
int i;
p = "unknown";
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (idle_tbl[i].id_fn == cpu_idle_fn) {
p = idle_tbl[i].id_name;
break;
}
}
strncpy(buf, p, sizeof(buf));
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return (error);
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (strstr(idle_tbl[i].id_name, "mwait") &&
(cpu_feature2 & CPUID2_MON) == 0)
continue;
if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
cpu_idle_hook == NULL)
continue;
if (strcmp(idle_tbl[i].id_name, buf))
continue;
cpu_idle_fn = idle_tbl[i].id_fn;
return (0);
}
return (EINVAL);
}
SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
idle_sysctl, "A", "currently selected idle function");
/*
* Reset registers to default values on exec.
*/

View File

@ -91,6 +91,7 @@ struct dumperinfo;
void *alloc_fpusave(int flags);
void amd64_syscall(struct thread *td, int traced);
void busdma_swi(void);
void cpu_probe_amdc1e(void);
void cpu_setregs(void);
void doreti_iret(void) __asm(__STRING(doreti_iret));
void doreti_iret_fault(void) __asm(__STRING(doreti_iret_fault));

View File

@ -558,6 +558,7 @@ x86/pci/pci_bus.c optional pci
x86/pci/qpi.c optional pci
x86/x86/busdma_bounce.c standard
x86/x86/busdma_machdep.c standard
x86/x86/cpu_machdep.c standard
x86/x86/dump_machdep.c standard
x86/x86/fdt_machdep.c optional fdt
x86/x86/identcpu.c standard

View File

@ -576,6 +576,7 @@ x86/pci/pci_bus.c optional pci
x86/pci/qpi.c optional pci
x86/x86/busdma_bounce.c standard
x86/x86/busdma_machdep.c standard
x86/x86/cpu_machdep.c standard
x86/x86/dump_machdep.c standard
x86/x86/fdt_machdep.c optional fdt
x86/x86/identcpu.c standard

View File

@ -248,6 +248,7 @@ x86/isa/isa.c optional isa
x86/pci/pci_bus.c optional pci
x86/x86/busdma_bounce.c standard
x86/x86/busdma_machdep.c standard
x86/x86/cpu_machdep.c standard
x86/x86/dump_machdep.c standard
x86/x86/identcpu.c standard
x86/x86/intr_machdep.c standard

View File

@ -1175,427 +1175,6 @@ sys_sigreturn(td, uap)
return (EJUSTRETURN);
}
/*
* Machine dependent boot() routine
*
* I haven't seen anything to put here yet
* Possibly some stuff might be grafted back here from boot()
*/
void
cpu_boot(int howto)
{
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* Not applicable */
}
/* Get current clock frequency for the given cpu id. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
uint64_t tsc1, tsc2;
uint64_t acnt, mcnt, perf;
register_t reg;
if (pcpu_find(cpu_id) == NULL || rate == NULL)
return (EINVAL);
if ((cpu_feature & CPUID_TSC) == 0)
return (EOPNOTSUPP);
/*
* If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
* DELAY(9) based logic fails.
*/
if (tsc_is_invariant && !tsc_perf_stat)
return (EOPNOTSUPP);
#ifdef SMP
if (smp_cpus > 1) {
/* Schedule ourselves on the indicated cpu. */
thread_lock(curthread);
sched_bind(curthread, cpu_id);
thread_unlock(curthread);
}
#endif
/* Calibrate by measuring a short delay. */
reg = intr_disable();
if (tsc_is_invariant) {
wrmsr(MSR_MPERF, 0);
wrmsr(MSR_APERF, 0);
tsc1 = rdtsc();
DELAY(1000);
mcnt = rdmsr(MSR_MPERF);
acnt = rdmsr(MSR_APERF);
tsc2 = rdtsc();
intr_restore(reg);
perf = 1000 * acnt / mcnt;
*rate = (tsc2 - tsc1) * perf;
} else {
tsc1 = rdtsc();
DELAY(1000);
tsc2 = rdtsc();
intr_restore(reg);
*rate = (tsc2 - tsc1) * 1000;
}
#ifdef SMP
if (smp_cpus > 1) {
thread_lock(curthread);
sched_unbind(curthread);
thread_unlock(curthread);
}
#endif
return (0);
}
#ifdef XEN
static void
idle_block(void)
{
HYPERVISOR_sched_op(SCHEDOP_block, 0);
}
void
cpu_halt(void)
{
HYPERVISOR_shutdown(SHUTDOWN_poweroff);
}
int scheduler_running;
static void
cpu_idle_hlt(sbintime_t sbt)
{
scheduler_running = 1;
enable_intr();
idle_block();
}
#else
/*
* Shutdown the CPU as much as possible
*/
void
cpu_halt(void)
{
for (;;)
halt();
}
#endif
void (*cpu_idle_hook)(sbintime_t) = NULL; /* ACPI idle hook. */
static int cpu_ident_amdc1e = 0; /* AMD C1E supported. */
static int idle_mwait = 1; /* Use MONITOR/MWAIT for short idle. */
SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait,
0, "Use MONITOR/MWAIT for short idle");
#define STATE_RUNNING 0x0
#define STATE_MWAIT 0x1
#define STATE_SLEEPING 0x2
#ifndef PC98
static void
cpu_idle_acpi(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_SLEEPING;
/* See comments in cpu_idle_hlt(). */
disable_intr();
if (sched_runnable())
enable_intr();
else if (cpu_idle_hook)
cpu_idle_hook(sbt);
else
__asm __volatile("sti; hlt");
*state = STATE_RUNNING;
}
#endif /* !PC98 */
#ifndef XEN
static void
cpu_idle_hlt(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_SLEEPING;
/*
* Since we may be in a critical section from cpu_idle(), if
* an interrupt fires during that critical section we may have
* a pending preemption. If the CPU halts, then that thread
* may not execute until a later interrupt awakens the CPU.
* To handle this race, check for a runnable thread after
* disabling interrupts and immediately return if one is
* found. Also, we must absolutely guarentee that hlt is
* the next instruction after sti. This ensures that any
* interrupt that fires after the call to disable_intr() will
* immediately awaken the CPU from hlt. Finally, please note
* that on x86 this works fine because of interrupts enabled only
* after the instruction following sti takes place, while IF is set
* to 1 immediately, allowing hlt instruction to acknowledge the
* interrupt.
*/
disable_intr();
if (sched_runnable())
enable_intr();
else
__asm __volatile("sti; hlt");
*state = STATE_RUNNING;
}
#endif
static void
cpu_idle_mwait(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_MWAIT;
/* See comments in cpu_idle_hlt(). */
disable_intr();
if (sched_runnable()) {
enable_intr();
*state = STATE_RUNNING;
return;
}
cpu_monitor(state, 0, 0);
if (*state == STATE_MWAIT)
__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
else
enable_intr();
*state = STATE_RUNNING;
}
static void
cpu_idle_spin(sbintime_t sbt)
{
int *state;
int i;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_RUNNING;
/*
* The sched_runnable() call is racy but as long as there is
* a loop missing it one time will have just a little impact if any
* (and it is much better than missing the check at all).
*/
for (i = 0; i < 1000; i++) {
if (sched_runnable())
return;
cpu_spinwait();
}
}
/*
* C1E renders the local APIC timer dead, so we disable it by
* reading the Interrupt Pending Message register and clearing
* both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
*
* Reference:
* "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
* #32559 revision 3.00+
*/
#define MSR_AMDK8_IPM 0xc0010055
#define AMDK8_SMIONCMPHALT (1ULL << 27)
#define AMDK8_C1EONCMPHALT (1ULL << 28)
#define AMDK8_CMPHALT (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
static void
cpu_probe_amdc1e(void)
{
/*
* Detect the presence of C1E capability mostly on latest
* dual-cores (or future) k8 family.
*/
if (cpu_vendor_id == CPU_VENDOR_AMD &&
(cpu_id & 0x00000f00) == 0x00000f00 &&
(cpu_id & 0x0fff0000) >= 0x00040000) {
cpu_ident_amdc1e = 1;
}
}
#if defined(PC98) || defined(XEN)
void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
#else
void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
#endif
void
cpu_idle(int busy)
{
#ifndef XEN
uint64_t msr;
#endif
sbintime_t sbt = -1;
CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
busy, curcpu);
#if defined(MP_WATCHDOG) && !defined(XEN)
ap_watchdog(PCPU_GET(cpuid));
#endif
#ifndef XEN
/* If we are busy - try to use fast methods. */
if (busy) {
if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
cpu_idle_mwait(busy);
goto out;
}
}
#endif
/* If we have time - switch timers into idle mode. */
if (!busy) {
critical_enter();
sbt = cpu_idleclock();
}
#ifndef XEN
/* Apply AMD APIC timer C1E workaround. */
if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
msr = rdmsr(MSR_AMDK8_IPM);
if (msr & AMDK8_CMPHALT)
wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
}
#endif
/* Call main idle method. */
cpu_idle_fn(sbt);
/* Switch timers back into active mode. */
if (!busy) {
cpu_activeclock();
critical_exit();
}
#ifndef XEN
out:
#endif
CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
busy, curcpu);
}
int
cpu_idle_wakeup(int cpu)
{
struct pcpu *pcpu;
int *state;
pcpu = pcpu_find(cpu);
state = (int *)pcpu->pc_monitorbuf;
/*
* This doesn't need to be atomic since missing the race will
* simply result in unnecessary IPIs.
*/
if (*state == STATE_SLEEPING)
return (0);
if (*state == STATE_MWAIT)
*state = STATE_RUNNING;
return (1);
}
/*
* Ordered by speed/power consumption.
*/
struct {
void *id_fn;
char *id_name;
} idle_tbl[] = {
{ cpu_idle_spin, "spin" },
{ cpu_idle_mwait, "mwait" },
{ cpu_idle_hlt, "hlt" },
#ifndef PC98
{ cpu_idle_acpi, "acpi" },
#endif
{ NULL, NULL }
};
static int
idle_sysctl_available(SYSCTL_HANDLER_ARGS)
{
char *avail, *p;
int error;
int i;
avail = malloc(256, M_TEMP, M_WAITOK);
p = avail;
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (strstr(idle_tbl[i].id_name, "mwait") &&
(cpu_feature2 & CPUID2_MON) == 0)
continue;
#ifndef PC98
if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
cpu_idle_hook == NULL)
continue;
#endif
p += sprintf(p, "%s%s", p != avail ? ", " : "",
idle_tbl[i].id_name);
}
error = sysctl_handle_string(oidp, avail, 0, req);
free(avail, M_TEMP);
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
0, 0, idle_sysctl_available, "A", "list of available idle functions");
static int
idle_sysctl(SYSCTL_HANDLER_ARGS)
{
char buf[16];
int error;
char *p;
int i;
p = "unknown";
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (idle_tbl[i].id_fn == cpu_idle_fn) {
p = idle_tbl[i].id_name;
break;
}
}
strncpy(buf, p, sizeof(buf));
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return (error);
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (strstr(idle_tbl[i].id_name, "mwait") &&
(cpu_feature2 & CPUID2_MON) == 0)
continue;
#ifndef PC98
if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
cpu_idle_hook == NULL)
continue;
#endif
if (strcmp(idle_tbl[i].id_name, buf))
continue;
cpu_idle_fn = idle_tbl[i].id_fn;
return (0);
}
return (EINVAL);
}
SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
idle_sysctl, "A", "currently selected idle function");
/*
* Reset registers to default values on exec.
*/

View File

@ -97,6 +97,7 @@ struct dumperinfo;
void *alloc_fpusave(int flags);
void bcopyb(const void *from, void *to, size_t len);
void busdma_swi(void);
void cpu_probe_amdc1e(void);
void cpu_setregs(void);
void cpu_switch_load_gs(void) __asm(__STRING(cpu_switch_load_gs));
void doreti_iret(void) __asm(__STRING(doreti_iret));

533
sys/x86/x86/cpu_machdep.c Normal file
View File

@ -0,0 +1,533 @@
/*-
* Copyright (c) 2003 Peter Wemm.
* Copyright (c) 1992 Terrence R. Lambert.
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_atpic.h"
#include "opt_compat.h"
#include "opt_cpu.h"
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_isa.h"
#include "opt_kstack_pages.h"
#include "opt_maxmem.h"
#include "opt_mp_watchdog.h"
#include "opt_perfmon.h"
#include "opt_platform.h"
#ifdef __i386__
#include "opt_npx.h"
#include "opt_apic.h"
#include "opt_xbox.h"
#endif
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#ifdef SMP
#include <sys/smp.h>
#endif
#include <sys/sysctl.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <machine/specialreg.h>
#include <machine/md_var.h>
#include <machine/mp_watchdog.h>
#ifdef PERFMON
#include <machine/perfmon.h>
#endif
#include <machine/tss.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <vm/vm_param.h>
#ifdef XEN
/* XEN includes */
#include <xen/xen-os.h>
#include <xen/hypervisor.h>
#include <machine/xen/xenvar.h>
#include <machine/xen/xenfunc.h>
#include <xen/xen_intr.h>
#endif
/*
* Machine dependent boot() routine
*
* I haven't seen anything to put here yet
* Possibly some stuff might be grafted back here from boot()
*/
void
cpu_boot(int howto)
{
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* Not applicable */
}
/* Get current clock frequency for the given cpu id. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
uint64_t tsc1, tsc2;
uint64_t acnt, mcnt, perf;
register_t reg;
if (pcpu_find(cpu_id) == NULL || rate == NULL)
return (EINVAL);
#ifdef __i386__
if ((cpu_feature & CPUID_TSC) == 0)
return (EOPNOTSUPP);
#endif
/*
* If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
* DELAY(9) based logic fails.
*/
if (tsc_is_invariant && !tsc_perf_stat)
return (EOPNOTSUPP);
#ifdef SMP
if (smp_cpus > 1) {
/* Schedule ourselves on the indicated cpu. */
thread_lock(curthread);
sched_bind(curthread, cpu_id);
thread_unlock(curthread);
}
#endif
/* Calibrate by measuring a short delay. */
reg = intr_disable();
if (tsc_is_invariant) {
wrmsr(MSR_MPERF, 0);
wrmsr(MSR_APERF, 0);
tsc1 = rdtsc();
DELAY(1000);
mcnt = rdmsr(MSR_MPERF);
acnt = rdmsr(MSR_APERF);
tsc2 = rdtsc();
intr_restore(reg);
perf = 1000 * acnt / mcnt;
*rate = (tsc2 - tsc1) * perf;
} else {
tsc1 = rdtsc();
DELAY(1000);
tsc2 = rdtsc();
intr_restore(reg);
*rate = (tsc2 - tsc1) * 1000;
}
#ifdef SMP
if (smp_cpus > 1) {
thread_lock(curthread);
sched_unbind(curthread);
thread_unlock(curthread);
}
#endif
return (0);
}
#if defined(__i386__) && defined(XEN)
static void
idle_block(void)
{
HYPERVISOR_sched_op(SCHEDOP_block, 0);
}
void
cpu_halt(void)
{
HYPERVISOR_shutdown(SHUTDOWN_poweroff);
}
int scheduler_running;
static void
cpu_idle_hlt(sbintime_t sbt)
{
scheduler_running = 1;
enable_intr();
idle_block();
}
#else
/*
* Shutdown the CPU as much as possible
*/
void
cpu_halt(void)
{
for (;;)
halt();
}
#endif
void (*cpu_idle_hook)(sbintime_t) = NULL; /* ACPI idle hook. */
static int cpu_ident_amdc1e = 0; /* AMD C1E supported. */
static int idle_mwait = 1; /* Use MONITOR/MWAIT for short idle. */
SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait,
0, "Use MONITOR/MWAIT for short idle");
#define STATE_RUNNING 0x0
#define STATE_MWAIT 0x1
#define STATE_SLEEPING 0x2
#ifndef PC98
static void
cpu_idle_acpi(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_SLEEPING;
/* See comments in cpu_idle_hlt(). */
disable_intr();
if (sched_runnable())
enable_intr();
else if (cpu_idle_hook)
cpu_idle_hook(sbt);
else
__asm __volatile("sti; hlt");
*state = STATE_RUNNING;
}
#endif /* !PC98 */
#if !defined(__i386__) || !defined(XEN)
static void
cpu_idle_hlt(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_SLEEPING;
/*
* Since we may be in a critical section from cpu_idle(), if
* an interrupt fires during that critical section we may have
* a pending preemption. If the CPU halts, then that thread
* may not execute until a later interrupt awakens the CPU.
* To handle this race, check for a runnable thread after
* disabling interrupts and immediately return if one is
* found. Also, we must absolutely guarentee that hlt is
* the next instruction after sti. This ensures that any
* interrupt that fires after the call to disable_intr() will
* immediately awaken the CPU from hlt. Finally, please note
* that on x86 this works fine because of interrupts enabled only
* after the instruction following sti takes place, while IF is set
* to 1 immediately, allowing hlt instruction to acknowledge the
* interrupt.
*/
disable_intr();
if (sched_runnable())
enable_intr();
else
__asm __volatile("sti; hlt");
*state = STATE_RUNNING;
}
#endif
static void
cpu_idle_mwait(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_MWAIT;
/* See comments in cpu_idle_hlt(). */
disable_intr();
if (sched_runnable()) {
enable_intr();
*state = STATE_RUNNING;
return;
}
cpu_monitor(state, 0, 0);
if (*state == STATE_MWAIT)
__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
else
enable_intr();
*state = STATE_RUNNING;
}
static void
cpu_idle_spin(sbintime_t sbt)
{
int *state;
int i;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_RUNNING;
/*
* The sched_runnable() call is racy but as long as there is
* a loop missing it one time will have just a little impact if any
* (and it is much better than missing the check at all).
*/
for (i = 0; i < 1000; i++) {
if (sched_runnable())
return;
cpu_spinwait();
}
}
/*
* C1E renders the local APIC timer dead, so we disable it by
* reading the Interrupt Pending Message register and clearing
* both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
*
* Reference:
* "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
* #32559 revision 3.00+
*/
#define MSR_AMDK8_IPM 0xc0010055
#define AMDK8_SMIONCMPHALT (1ULL << 27)
#define AMDK8_C1EONCMPHALT (1ULL << 28)
#define AMDK8_CMPHALT (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
void
cpu_probe_amdc1e(void)
{
/*
* Detect the presence of C1E capability mostly on latest
* dual-cores (or future) k8 family.
*/
if (cpu_vendor_id == CPU_VENDOR_AMD &&
(cpu_id & 0x00000f00) == 0x00000f00 &&
(cpu_id & 0x0fff0000) >= 0x00040000) {
cpu_ident_amdc1e = 1;
}
}
#if defined(__i386__) && (defined(PC98) || defined(XEN))
void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
#else
void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
#endif
void
cpu_idle(int busy)
{
#if !defined(__i386__) || !defined(XEN)
uint64_t msr;
#endif
sbintime_t sbt = -1;
CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
busy, curcpu);
#if defined(MP_WATCHDOG) && (!defined(__i386__) || !defined(XEN))
ap_watchdog(PCPU_GET(cpuid));
#endif
#if !defined(__i386__) || !defined(XEN)
/* If we are busy - try to use fast methods. */
if (busy) {
if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
cpu_idle_mwait(busy);
goto out;
}
}
#endif
/* If we have time - switch timers into idle mode. */
if (!busy) {
critical_enter();
sbt = cpu_idleclock();
}
#if !defined(__i386__) || !defined(XEN)
/* Apply AMD APIC timer C1E workaround. */
if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
msr = rdmsr(MSR_AMDK8_IPM);
if (msr & AMDK8_CMPHALT)
wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
}
#endif
/* Call main idle method. */
cpu_idle_fn(sbt);
/* Switch timers back into active mode. */
if (!busy) {
cpu_activeclock();
critical_exit();
}
#if !defined(__i386__) || !defined(XEN)
out:
#endif
CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
busy, curcpu);
}
int
cpu_idle_wakeup(int cpu)
{
struct pcpu *pcpu;
int *state;
pcpu = pcpu_find(cpu);
state = (int *)pcpu->pc_monitorbuf;
/*
* This doesn't need to be atomic since missing the race will
* simply result in unnecessary IPIs.
*/
if (*state == STATE_SLEEPING)
return (0);
if (*state == STATE_MWAIT)
*state = STATE_RUNNING;
return (1);
}
/*
* Ordered by speed/power consumption.
*/
struct {
void *id_fn;
char *id_name;
} idle_tbl[] = {
{ cpu_idle_spin, "spin" },
{ cpu_idle_mwait, "mwait" },
{ cpu_idle_hlt, "hlt" },
#if !defined(__i386__) || !defined(PC98)
{ cpu_idle_acpi, "acpi" },
#endif
{ NULL, NULL }
};
static int
idle_sysctl_available(SYSCTL_HANDLER_ARGS)
{
char *avail, *p;
int error;
int i;
avail = malloc(256, M_TEMP, M_WAITOK);
p = avail;
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (strstr(idle_tbl[i].id_name, "mwait") &&
(cpu_feature2 & CPUID2_MON) == 0)
continue;
#if !defined(__i386__) || !defined(PC98)
if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
cpu_idle_hook == NULL)
continue;
#endif
p += sprintf(p, "%s%s", p != avail ? ", " : "",
idle_tbl[i].id_name);
}
error = sysctl_handle_string(oidp, avail, 0, req);
free(avail, M_TEMP);
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
0, 0, idle_sysctl_available, "A", "list of available idle functions");
static int
idle_sysctl(SYSCTL_HANDLER_ARGS)
{
char buf[16];
int error;
char *p;
int i;
p = "unknown";
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (idle_tbl[i].id_fn == cpu_idle_fn) {
p = idle_tbl[i].id_name;
break;
}
}
strncpy(buf, p, sizeof(buf));
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return (error);
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (strstr(idle_tbl[i].id_name, "mwait") &&
(cpu_feature2 & CPUID2_MON) == 0)
continue;
#if !defined(__i386__) || !defined(PC98)
if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
cpu_idle_hook == NULL)
continue;
#endif
if (strcmp(idle_tbl[i].id_name, buf))
continue;
cpu_idle_fn = idle_tbl[i].id_fn;
return (0);
}
return (EINVAL);
}
SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
idle_sysctl, "A", "currently selected idle function");