Update to latest version from Dave Mills. Mostly textual.

This commit is contained in:
Poul-Henning Kamp 1999-04-04 10:28:42 +00:00
parent 876318eca0
commit f425c1f631
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=45294
2 changed files with 54 additions and 31 deletions

View File

@ -1,6 +1,6 @@
/***********************************************************************
* *
* Copyright (c) David L. Mills 1993-1998 *
* Copyright (c) David L. Mills 1993-1999 *
* *
* Permission to use, copy, modify, and distribute this software and *
* its documentation for any purpose and without fee is hereby *
@ -75,16 +75,17 @@ typedef long long l_fp;
* phase and frequency of the clock discipline loop which controls the
* system clock.
*
* When the kernel time is reckoned directly in nanoseconds (NANO
* When the kernel time is reckoned directly in nanoseconds (NTP_NANO
* defined), the time at each tick interrupt is derived directly from
* the kernel time variable. When the kernel time is reckoned in
* microseconds, (NANO undefined), the time is derived from the kernel
* time variable together with a variable representing the leftover
* nanoseconds at the last tick interrupt. In either case, the current
* nanosecond time is reckoned from these values plus an interpolated
* value derived by the clock routines in another architecture-specific
* module. The interpolation can use either a dedicated counter or a
* processor cycle counter (PCC) implemented in some architectures.
* microseconds, (NTP_NANO undefined), the time is derived from the
* kernel time variable together with a variable representing the
* leftover nanoseconds at the last tick interrupt. In either case, the
* current nanosecond time is reckoned from these values plus an
* interpolated value derived by the clock routines in another
* architecture-specific module. The interpolation can use either a
* dedicated counter or a processor cycle counter (PCC) implemented in
* some architectures.
*
* Note that all routines must run at priority splclock or higher.
*/
@ -103,7 +104,7 @@ typedef long long l_fp;
* A time variable is a signed 64-bit fixed-point number in ns and
* fraction. It represents the remaining time offset to be amortized
* over succeeding tick interrupts. The maximum time offset is about
* 0.512 s and the resolution is about 2.3e-10 ns.
* 0.5 s and the resolution is about 2.3e-10 ns.
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
@ -116,7 +117,7 @@ typedef long long l_fp;
* A frequency variable is a signed 64-bit fixed-point number in ns/s
* and fraction. It represents the ns and fraction to be added to the
* kernel time variable at each second. The maximum frequency offset is
* about +-512000 ns/s and the resolution is about 2.3e-10 ns/s.
* about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
@ -144,6 +145,8 @@ static long time_tick; /* nanoseconds per tick (ns) */
static l_fp time_offset; /* time offset (ns) */
static l_fp time_freq; /* frequency offset (ns/s) */
int ntp_mult;
int ntp_div;
#ifdef PPS_SYNC
/*
* The following variables are used when a pulse-per-second (PPS) signal
@ -152,7 +155,7 @@ static l_fp time_freq; /* frequency offset (ns/s) */
* controlled by the PPS signal.
*/
#define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
#define PPS_FAVGMAX 7 /* max freq avg interval (s) (shift) */
#define PPS_FAVGMAX 8 /* max freq avg interval (s) (shift) */
#define PPS_PAVG 4 /* phase avg interval (s) (shift) */
#define PPS_VALID 120 /* PPS signal watchdog max (s) */
#define MAXTIME 500000 /* max PPS error (jitter) (ns) */
@ -164,9 +167,9 @@ struct ppstime {
};
static struct ppstime pps_tf[3]; /* phase median filter */
static struct ppstime pps_filt; /* phase offset */
static long pps_fcount; /* frequency accumulator */
static l_fp pps_freq; /* scaled frequency offset (ns/s) */
static long pps_offacc; /* offset accumulator */
static long pps_fcount; /* frequency accumulator */
static long pps_jitter; /* scaled time dispersion (ns) */
static long pps_stabil; /* scaled frequency dispersion (ns/s) */
static long pps_lastsec; /* time at last calibration (s) */
@ -245,6 +248,8 @@ SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
SYSCTL_INT(_kern_ntp_pll, OID_AUTO, mult, CTLFLAG_RW, &ntp_mult, 0, "");
SYSCTL_INT(_kern_ntp_pll, OID_AUTO, div, CTLFLAG_RW, &ntp_div, 0, "");
/*
* ntp_adjtime() - NTP daemon application interface
@ -261,6 +266,7 @@ int
ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
{
struct timex ntv; /* temporary structure */
long freq; /* frequency ns/s) */
int modes; /* mode bits from structure */
int s; /* caller priority */
int error;
@ -281,7 +287,14 @@ ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
return (error);
s = splclock();
if (modes & MOD_FREQUENCY) {
time_freq = (ntv.freq * 1000LL) << 16;
freq = (ntv.freq * 1000) << 16;
if (freq > MAXFREQ)
L_LINT(time_freq, MAXFREQ);
else if (freq < -MAXFREQ)
L_LINT(time_freq, -MAXFREQ);
else
L_LINT(time_freq, freq);
#ifdef PPS_SYNC
pps_freq = time_freq;
#endif /* PPS_SYNC */
@ -294,8 +307,14 @@ ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
time_status &= STA_RONLY;
time_status |= ntv.status & ~STA_RONLY;
}
if (modes & MOD_TIMECONST)
time_constant = ntv.constant;
if (modes & MOD_TIMECONST) {
if (ntv.constant < 0)
time_constant = 0;
else if (ntv.constant > MAXTC)
time_constant = MAXTC;
else
time_constant = ntv.constant;
}
if (modes & MOD_NANO)
time_status |= STA_NANO;
if (modes & MOD_MICRO)
@ -318,16 +337,11 @@ ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
ntv.offset = L_GINT(time_offset);
else
ntv.offset = L_GINT(time_offset) / 1000;
ntv.freq = L_GINT((time_freq / 1000) * 65536);
ntv.freq = L_GINT((time_freq / 1000) << 16);
ntv.maxerror = time_maxerror;
ntv.esterror = time_esterror;
ntv.status = time_status;
if (ntv.constant < 0)
time_constant = 0;
else if (ntv.constant > MAXTC)
time_constant = MAXTC;
else
time_constant = ntv.constant;
ntv.constant = time_constant;
if (time_status & STA_NANO)
ntv.precision = time_precision;
else
@ -335,7 +349,7 @@ ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
ntv.tolerance = MAXFREQ * SCALE_PPM;
#ifdef PPS_SYNC
ntv.shift = pps_shift;
ntv.ppsfreq = L_GINT((pps_freq / 1000) * 65536);
ntv.ppsfreq = L_GINT((pps_freq / 1000) << 16);
ntv.jitter = pps_jitter;
if (time_status & STA_NANO)
ntv.jitter = pps_jitter;
@ -508,8 +522,8 @@ ntp_init()
L_CLR(time_freq);
#ifdef PPS_SYNC
pps_filt.sec = pps_filt.nsec = 0;
pps_fcount = 0;
pps_tf[0] = pps_tf[1] = pps_tf[2] = pps_filt;
pps_fcount = 0;
L_CLR(pps_freq);
#endif /* PPS_SYNC */
}
@ -717,10 +731,18 @@ hardpps(tsp, nsec)
}
pps_offacc = 0;
pps_offcnt = 0;
}
pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
u_sec = pps_tf[0].sec - pps_lastsec;
if (ntp_div && ntp_mult) {
L_LINT(ftemp, (pps_filt.nsec));
L_RSHIFT(ftemp, ntp_div);
L_MPY(ftemp, ntp_mult);
L_ADD(pps_freq, ftemp);
if (time_status & STA_PPSFREQ)
time_freq = pps_freq;
return;
}
if (u_sec < (1 << pps_shift))
return;
@ -795,7 +817,7 @@ hardpps(tsp, nsec)
* The frequency offset is averaged into the PPS frequency. If
* enabled, the system clock frequency is updated as well.
*/
L_RSHIFT(ftemp, 1);
L_RSHIFT(ftemp, PPS_FAVG);
L_ADD(pps_freq, ftemp);
u_nsec = L_GINT(pps_freq);
if (u_nsec > MAXFREQ)

View File

@ -87,7 +87,8 @@
* further information.
*/
#ifndef _SYS_TIMEX_H_
#define _SYS_TIMEX_H_
#define _SYS_TIMEX_H_ 1
#define NTP_API 3 /* NTP API version */
#ifndef MSDOS /* Microsoft specific */
#include <sys/syscall.h>
@ -105,7 +106,7 @@
#define MAXPHASE 500000000L /* max phase error (ns) */
#define MAXFREQ 500000L /* max freq error (ns/s) */
#define MINSEC 256 /* min FLL update interval (s) */
#define MAXSEC 1600 /* max PLL update interval (s) */
#define MAXSEC 2048 /* max PLL update interval (s) */
#define NANOSECOND 1000000000L /* nanoseconds in one second */
#define SCALE_PPM (65536 / 1000) /* crude ns/s to scaled PPM */
#define MAXTC 10 /* max time constant in PLL mode */
@ -114,7 +115,7 @@
* The following defines and structures define the user interface for
* the ntp_gettime() and ntp_adjtime() syscalls.
*
* Control mode codes (timex.modes and nanotimex.modes)
* Control mode codes (timex.modes)
*/
#define MOD_OFFSET 0x0001 /* set time offset */
#define MOD_FREQUENCY 0x0002 /* set frequency offset */
@ -169,7 +170,7 @@
* nanoseconds if not.
*/
struct ntptimeval {
struct timespec time; /* current time (ns/us) (ro) */
struct timespec time; /* current time (ns) (ro) */
long maxerror; /* maximum error (us) (ro) */
long esterror; /* estimated error (us) (ro) */
int time_state; /* time status */