Add support for reading i2c SFP/SFP+ data from NIC driver and

presenting most interesting fields via ifconfig -v.
This version supports Intel ixgbe driver only.

Tested on:	Cisco,Intel,Mellanox,ModuleTech,Molex transceivers
MFC after:	2 weeks
This commit is contained in:
Alexander V. Chernikov 2014-08-16 19:13:52 +00:00
parent 4bf50f18eb
commit f732123e6b
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=270064
4 changed files with 551 additions and 0 deletions

View File

@ -33,6 +33,9 @@ SRCS+= ifvlan.c # SIOC[GS]ETVLAN support
SRCS+= ifgre.c # GRE keys etc
SRCS+= ifgif.c # GIF reversed header workaround
SRCS+= sfp.c # SFP/SFP+ information
LDADD+= -lm
SRCS+= ifieee80211.c regdomain.c # SIOC[GS]IEEE80211 support
DPADD+= ${LIBBSDXML} ${LIBSBUF}
LDADD+= -lbsdxml -lsbuf

View File

@ -1011,6 +1011,9 @@ status(const struct afswtch *afp, const struct sockaddr_dl *sdl,
if (ioctl(s, SIOCGIFSTATUS, &ifs) == 0)
printf("%s", ifs.ascii);
if (verbose > 0)
sfp_status(s, &ifr, verbose);
close(s);
return;
}

View File

@ -143,6 +143,8 @@ void ifmaybeload(const char *name);
typedef void clone_callback_func(int, struct ifreq *);
void clone_setdefcallback(const char *, clone_callback_func *);
void sfp_status(int s, struct ifreq *ifr, int verbose);
/*
* XXX expose this so modules that neeed to know of any pending
* operations on ifmedia can avoid cmd line ordering confusion.

543
sbin/ifconfig/sfp.c Normal file
View File

@ -0,0 +1,543 @@
/*-
* Copyright (c) 2014 Alexander V. Chernikov. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif /* not lint */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
#include <math.h>
#include <err.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "ifconfig.h"
/* 2wire addresses */
#define SFP_ADDR_MSA 0xA0 /* Identification data */
#define SFP_ADDR_DDM 0xA2 /* digital monitoring interface */
/* Definitions from Table 3.1 */
#define SFP_MSA_IDENTIFIER 0 /* Type of transceiver (T. 3.2), 1B */
#define SFP_MSA_CONNECTOR 2 /* Connector type (T. 3.3), 1B */
#define SFP_MSA_TRANSCEIVER_CLASS 3 /* Ethernet/Sonet/IB code, 1B */
#define SFP_MSA_VENDOR_NAME 20 /* ASCII vendor name, 16B */
#define SFP_MSA_VENDOR_PN 40 /* ASCII vendor partnum, 16B */
#define SFP_MSA_VENDOR_SN 68 /* ASCII vendor serialnum, 16B */
#define SFP_MSA_VENDOR_DATE 84 /* Vendor's date code, 8B */
#define SFP_MSA_DMONTYPE 92 /* Type of disagnostic monitoring, 1B */
/* Definitions from table 3.17 */
#define SFP_DDM_TEMP 96 /* Module temperature, 2B */
#define SFP_DDM_TXPOWER 102 /* Measured TX output power, 2B */
#define SFP_DDM_RXPOWER 104 /* Measured RX input power, 2B */
struct i2c_info;
typedef int (read_i2c)(struct i2c_info *ii, uint8_t addr, uint8_t off,
uint8_t len, caddr_t buf);
struct i2c_info {
int s;
int error;
struct ifreq *ifr;
read_i2c *f;
uint8_t diag_type;
char *textbuf;
size_t bufsize;
};
struct _nv {
int v;
const char *n;
};
const char *find_value(struct _nv *x, int value);
const char *find_zero_bit(struct _nv *x, int value, int sz);
/* SFF-8472 Rev. 11.4 table 3.2: Identifier values */
static struct _nv ids[] = {
{ 0x00, "Unknown" },
{ 0x01, "GBIC" },
{ 0x02, "SFF" },
{ 0x03, "SFP/SFP+" },
{ 0x04, "300 pin XBI" },
{ 0x05, "Xenpak" },
{ 0x06, "XFP" },
{ 0x07, "XFF" },
{ 0x08, "XFP-E" },
{ 0x09, "XPak" },
{ 0x0A, "X2" },
{ 0x0B, "DWDM-SFP/DWDM-SFP+" },
{ 0x0C, "QSFP" },
{ 0, NULL, },
};
/* SFF-8472 Rev. 11.4 table 3.4: Connector values */
static struct _nv conn[] = {
{ 0x00, "Unknown" },
{ 0x01, "SC" },
{ 0x02, "Fibre Channel Style 1 copper" },
{ 0x03, "Fibre Channel Style 2 copper" },
{ 0x04, "BNC/TNC" },
{ 0x05, "Fibre Channel coaxial" },
{ 0x06, "FiberJack" },
{ 0x07, "LC" },
{ 0x08, "MT-RJ" },
{ 0x09, "MU" },
{ 0x0A, "SG" },
{ 0x0B, "Optical pigtail" },
{ 0x0C, "MPO Parallel Optic" },
{ 0x20, "HSSDC II" },
{ 0x21, "Copper pigtail" },
{ 0x22, "RJ45" },
{ 0, NULL }
};
const char *
find_value(struct _nv *x, int value)
{
for (; x->n != NULL; x++)
if (x->v == value)
return (x->n);
return (NULL);
}
const char *
find_zero_bit(struct _nv *x, int value, int sz)
{
int v, m;
const char *s;
v = 1;
for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) {
if ((value & v) == 0)
continue;
if ((s = find_value(x, value & v)) != NULL) {
value &= ~v;
return (s);
}
}
return (NULL);
}
static void
get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size)
{
const char *x;
uint8_t data;
ii->f(ii, SFP_ADDR_MSA, SFP_MSA_IDENTIFIER, 1, (caddr_t)&data);
if ((x = find_value(ids, data)) == NULL) {
if (data > 0x80)
x = "Vendor specific";
else
x = "Reserved";
}
snprintf(buf, size, "%s", x);
}
static void
get_sfp_connector(struct i2c_info *ii, char *buf, size_t size)
{
const char *x;
uint8_t data;
ii->f(ii, SFP_ADDR_MSA, SFP_MSA_CONNECTOR, 1, (caddr_t)&data);
if ((x = find_value(conn, data)) == NULL) {
if (data >= 0x0D && data <= 0x1F)
x = "Unallocated";
else if (data >= 0x23 && data <= 0x7F)
x = "Unallocated";
else
x = "Vendor specific";
}
snprintf(buf, size, "%s", x);
}
/* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */
/* 10G Ethernet compliance codes, byte 3 */
static struct _nv eth_10g[] = {
{ 0x80, "10G Base-ER" },
{ 0x40, "10G Base-LRM" },
{ 0x20, "10G Base-LR" },
{ 0x10, "10G Base-SR" },
{ 0x08, "1X SX" },
{ 0x04, "1X LX" },
{ 0x02, "1X Copper Active" },
{ 0x01, "1X Copper Passive" },
{ 0, NULL }
};
/* Ethernet compliance codes, byte 6 */
static struct _nv eth_compat[] = {
{ 0x80, "BASE-PX" },
{ 0x40, "BASE-BX10" },
{ 0x20, "100BASE-FX" },
{ 0x10, "100BASE-LX/LX10" },
{ 0x08, "1000BASE-T" },
{ 0x04, "1000BASE-CX" },
{ 0x02, "1000BASE-LX" },
{ 0x01, "1000BASE-SX" },
{ 0, NULL }
};
/* FC link length, byte 7 */
static struct _nv fc_len[] = {
{ 0x80, "very long distance" },
{ 0x40, "short distance" },
{ 0x20, "intermediate distance" },
{ 0x10, "long distance" },
{ 0x08, "medium distance" },
{ 0, NULL }
};
/* Channel/Cable technology, byte 7-8 */
static struct _nv cab_tech[] = {
{ 0x0400, "Shortwave laser (SA)" },
{ 0x0200, "Longwave laser (LC)" },
{ 0x0100, "Electrical inter-enclosure (EL)" },
{ 0x80, "Electrical intra-enclosure (EL)" },
{ 0x40, "Shortwave laser (SN)" },
{ 0x20, "Shortwave laser (SL)" },
{ 0x10, "Longwave laser (LL)" },
{ 0x08, "Active Cable" },
{ 0x04, "Passive Cable" },
{ 0, NULL }
};
/* FC Transmission media, byte 9 */
static struct _nv fc_media[] = {
{ 0x80, "Twin Axial Pair" },
{ 0x40, "Twisted Pair" },
{ 0x20, "Miniature Coax" },
{ 0x10, "Viao Coax" },
{ 0x08, "Miltimode, 62.5um" },
{ 0x04, "Multimode, 50um" },
{ 0x02, "" },
{ 0x01, "Single Mode" },
{ 0, NULL }
};
/* FC Speed, byte 10 */
static struct _nv fc_speed[] = {
{ 0x80, "1200 MBytes/sec" },
{ 0x40, "800 MBytes/sec" },
{ 0x20, "1600 MBytes/sec" },
{ 0x10, "400 MBytes/sec" },
{ 0x08, "3200 MBytes/sec" },
{ 0x04, "200 MBytes/sec" },
{ 0x01, "100 MBytes/sec" },
{ 0, NULL }
};
static void
printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[12];
const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed;
tech_class = NULL;
tech_len = NULL;
tech_tech = NULL;
tech_media = NULL;
tech_speed = NULL;
/* Read bytes 3-10 at once */
ii->f(ii, SFP_ADDR_MSA, 3, 8, &xbuf[3]);
/* Check 10G first */
tech_class = find_zero_bit(eth_10g, xbuf[3], 1);
if (tech_class == NULL) {
/* No match. Try 1G */
tech_class = find_zero_bit(eth_compat, xbuf[6], 1);
}
tech_len = find_zero_bit(fc_len, xbuf[7], 1);
tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2);
tech_media = find_zero_bit(fc_media, xbuf[9], 1);
tech_speed = find_zero_bit(fc_speed, xbuf[10], 1);
printf("Class: %s\n", tech_class);
printf("Length: %s\n", tech_len);
printf("Tech: %s\n", tech_tech);
printf("Media: %s\n", tech_media);
printf("Speed: %s\n", tech_speed);
}
static void
get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
{
const char *tech_class;
uint8_t code;
/* Check 10G Ethernet/IB first */
ii->f(ii, SFP_ADDR_MSA, SFP_MSA_TRANSCEIVER_CLASS, 1, (caddr_t)&code);
tech_class = find_zero_bit(eth_10g, code, 1);
if (tech_class == NULL) {
/* No match. Try Ethernet 1G */
ii->f(ii, SFP_ADDR_MSA, 6, 1, (caddr_t)&code);
tech_class = find_zero_bit(eth_compat, code, 1);
}
if (tech_class == NULL)
tech_class = "Unknown";
snprintf(buf, size, "%s", tech_class);
}
static void
get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17], *p;
memset(xbuf, 0, sizeof(xbuf));
/* ASCII String, right-padded with 0x20 */
ii->f(ii, SFP_ADDR_MSA, SFP_MSA_VENDOR_NAME, 16, xbuf);
for (p = &xbuf[16]; *(p - 1) == 0x20; p--)
;
*p = '\0';
snprintf(buf, size, "%s", xbuf);
}
static void
get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17], *p;
memset(xbuf, 0, sizeof(xbuf));
/* ASCII String, right-padded with 0x20 */
ii->f(ii, SFP_ADDR_MSA, SFP_MSA_VENDOR_PN, 16, xbuf);
for (p = &xbuf[16]; *(p - 1) == 0x20; p--)
;
*p = '\0';
snprintf(buf, size, "%s", xbuf);
}
static void
get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17], *p;
memset(xbuf, 0, sizeof(xbuf));
/* ASCII String, right-padded with 0x20 */
ii->f(ii, SFP_ADDR_MSA, SFP_MSA_VENDOR_SN, 16, xbuf);
for (p = &xbuf[16]; *(p - 1) == 0x20; p--)
;
*p = '\0';
snprintf(buf, size, "%s", xbuf);
}
static void
get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[6];
memset(xbuf, 0, sizeof(xbuf));
/* Date code, see Table 3.8 for description */
ii->f(ii, SFP_ADDR_MSA, SFP_MSA_VENDOR_DATE, 6, xbuf);
snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1],
xbuf[2], xbuf[3], xbuf[4], xbuf[5]);
}
static void
print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[80];
memset(xbuf, 0, sizeof(xbuf));
get_sfp_vendor_name(ii, xbuf, 20);
get_sfp_vendor_pn(ii, &xbuf[20], 20);
get_sfp_vendor_sn(ii, &xbuf[40], 20);
get_sfp_vendor_date(ii, &xbuf[60], 20);
snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s",
xbuf, &xbuf[20], &xbuf[40], &xbuf[60]);
}
static void
get_sfp_temp(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[2];
int8_t major;
uint8_t minor;
int k;
memset(xbuf, 0, sizeof(xbuf));
ii->f(ii, SFP_ADDR_DDM, SFP_DDM_TEMP, 2, xbuf);
/* Convert temperature to string according to table 3.13 */
major = (int8_t)xbuf[0];
minor = (uint8_t)buf[1];
k = minor * 1000 / 256;
snprintf(buf, size, "%d.%d C", major, k / 100);
}
static void
convert_power(struct i2c_info *ii, char *xbuf, char *buf, size_t size)
{
uint16_t mW;
double dbm;
mW = ((uint8_t)xbuf[0] << 8) + (uint8_t)xbuf[1];
/* Convert mw to dbm */
dbm = 10.0 * log10(1.0 * mW / 10000);
/* Table 3.9, bit 5 is set, internally calibrated */
if ((ii->diag_type & 0x20) != 0) {
snprintf(buf, size, "%d.%02d mW (%.2f dBm)",
mW / 10000, (mW % 10000) / 100, dbm);
}
}
static void
get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
ii->f(ii, SFP_ADDR_DDM, SFP_DDM_RXPOWER, 2, xbuf);
convert_power(ii, xbuf, buf, size);
}
static void
get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
ii->f(ii, SFP_ADDR_DDM, SFP_DDM_TXPOWER, 2, xbuf);
convert_power(ii, xbuf, buf, size);
}
/* Intel ixgbe-specific structures and handlers */
struct ixgbe_i2c_req {
uint8_t dev_addr;
uint8_t offset;
uint8_t len;
uint8_t data[8];
};
#define SIOCGI2C SIOCGIFGENERIC
static int
read_i2c_ixgbe(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len,
caddr_t buf)
{
struct ixgbe_i2c_req ixreq;
int i;
if (ii->error != 0)
return (ii->error);
ii->ifr->ifr_data = (caddr_t)&ixreq;
memset(&ixreq, 0, sizeof(ixreq));
ixreq.dev_addr = addr;
for (i = 0; i < len; i += 1) {
ixreq.offset = off + i;
ixreq.len = 1;
if (ioctl(ii->s, SIOCGI2C, ii->ifr) != 0) {
ii->error = errno;
return (errno);
}
memcpy(&buf[i], ixreq.data, 1);
}
return (0);
}
void
sfp_status(int s, struct ifreq *ifr, int verbose)
{
struct i2c_info ii;
char buf[80], buf2[40], buf3[40];
/*
* Check if we have i2c support for particular driver.
* TODO: Determine driver by original name.
*/
memset(&ii, 0, sizeof(ii));
if (strncmp(ifr->ifr_name, "ix", 2) == 0) {
ii.f = read_i2c_ixgbe;
} else
return;
/* Prepare necessary into to pass to NIC handler */
ii.s = s;
ii.ifr = ifr;
/* Read diagnostic monitoring type */
ii.f(&ii, SFP_ADDR_MSA, SFP_MSA_DMONTYPE, 1, (caddr_t)&ii.diag_type);
/* Transceiver type */
get_sfp_identifier(&ii, buf, sizeof(buf));
get_sfp_transceiver_class(&ii, buf2, sizeof(buf2));
get_sfp_connector(&ii, buf3, sizeof(buf3));
if (ii.error == 0)
printf("\ti2c: %s %s (%s)\n", buf, buf2, buf3);
if (verbose > 2)
printf_sfp_transceiver_descr(&ii, buf, sizeof(buf));
print_sfp_vendor(&ii, buf, sizeof(buf));
if (ii.error == 0)
printf("\t%s\n", buf);
/*
* Request current measurements iff they are implemented:
* Bit 6 must be set.
*/
if ((ii.diag_type & 0x40) != 0) {
get_sfp_temp(&ii, buf, sizeof(buf));
get_sfp_rx_power(&ii, buf2, sizeof(buf2));
get_sfp_tx_power(&ii, buf3, sizeof(buf3));
printf("\tTemp: %s RX: %s TX: %s\n", buf, buf2, buf3);
}
close(s);
}