Remove unused Edon-R variants

This commit removes the edonr_byteorder.h file and all unused
variants of Edon-R.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes #13618
This commit is contained in:
Tino Reichardt 2023-03-14 23:59:58 +01:00 committed by GitHub
parent dbfc622345
commit fe6a7b787f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 188 additions and 929 deletions

View File

@ -1,6 +1,4 @@
/*
* IDI,NTNU
*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
@ -19,15 +17,13 @@
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Copyright (C) 2009, 2010, Jorn Amundsen <jorn.amundsen@ntnu.no>
*
* Tweaked Edon-R implementation for SUPERCOP, based on NIST API.
*
* $Id: edonr.h 517 2013-02-17 20:34:39Z joern $
*/
/*
* Portions copyright (c) 2013, Saso Kiselkov, All rights reserved
* Based on Edon-R implementation for SUPERCOP, based on NIST API.
* Copyright (c) 2009, 2010 Jørn Amundsen <jorn.amundsen@ntnu.no>
* Copyright (c) 2013 Saso Kiselkov, All rights reserved
* Copyright (c) 2022 Tino Reichardt <milky-zfs@mcmilk.de>
*/
#ifndef _SYS_EDONR_H_
@ -40,8 +36,8 @@ extern "C" {
#ifdef _KERNEL
#include <sys/types.h>
#else
#include <stdint.h> /* uint32_t... */
#include <stdlib.h> /* size_t ... */
#include <stdint.h>
#include <stdlib.h>
#endif
/*
@ -52,44 +48,29 @@ extern "C" {
*/
/* Specific algorithm definitions */
#define EdonR224_DIGEST_SIZE 28
#define EdonR224_BLOCK_SIZE 64
#define EdonR256_DIGEST_SIZE 32
#define EdonR256_BLOCK_SIZE 64
#define EdonR384_DIGEST_SIZE 48
#define EdonR384_BLOCK_SIZE 128
#define EdonR512_DIGEST_SIZE 64
#define EdonR512_BLOCK_SIZE 128
#define EdonR256_BLOCK_BITSIZE 512
#define EdonR512_BLOCK_BITSIZE 1024
typedef struct {
uint32_t DoublePipe[16];
uint8_t LastPart[EdonR256_BLOCK_SIZE * 2];
} EdonRData256;
typedef struct {
uint64_t DoublePipe[16];
uint8_t LastPart[EdonR512_BLOCK_SIZE * 2];
} EdonRData512;
typedef struct {
size_t hashbitlen;
/* + algorithm specific parameters */
int unprocessed_bits;
uint64_t bits_processed;
int unprocessed_bits;
union {
EdonRData256 p256[1];
EdonRData512 p512[1];
} pipe[1];
} EdonRState;
void EdonRInit(EdonRState *state, size_t hashbitlen);
void EdonRInit(EdonRState *state);
void EdonRUpdate(EdonRState *state, const uint8_t *data, size_t databitlen);
void EdonRFinal(EdonRState *state, uint8_t *hashval);
void EdonRHash(size_t hashbitlen, const uint8_t *data, size_t databitlen,
uint8_t *hashval);
void EdonRHash(const uint8_t *data, size_t databitlen, uint8_t *hashval);
#ifdef __cplusplus
}

View File

@ -1,6 +1,4 @@
/*
* IDI,NTNU
*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
@ -19,75 +17,44 @@
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Copyright (C) 2009, 2010, Jorn Amundsen <jorn.amundsen@ntnu.no>
* Tweaked Edon-R implementation for SUPERCOP, based on NIST API.
*
* $Id: edonr.c 517 2013-02-17 20:34:39Z joern $
*/
/*
* Portions copyright (c) 2013, Saso Kiselkov, All rights reserved
*/
/*
* Unlike sha2 or skein, we won't expose edonr via the Kernel Cryptographic
* Framework (KCF), because Edon-R is *NOT* suitable for general-purpose
* cryptographic use. Users of Edon-R must interface directly to this module.
* Based on Edon-R implementation for SUPERCOP, based on NIST API.
* Copyright (c) 2009, 2010, Jørn Amundsen <jorn.amundsen@ntnu.no>
* Copyright (c) 2013 Saso Kiselkov, All rights reserved
* Copyright (c) 2023 Tino Reichardt <milky-zfs@mcmilk.de>
*/
#include <sys/zfs_context.h>
#include <sys/string.h>
#include <sys/edonr.h>
#include <sys/debug.h>
/* big endian support, provides no-op's if run on little endian hosts */
#include "edonr_byteorder.h"
/*
* We need 1196 byte stack for Q512() on i386
* - we define this pragma to make gcc happy
*/
#if defined(__GNUC__) && defined(_ILP32)
#pragma GCC diagnostic ignored "-Wframe-larger-than="
#endif
/*
* Insert compiler memory barriers to reduce stack frame size.
*/
#define MEMORY_BARRIER asm volatile("" ::: "memory");
#if defined(_ZFS_BIG_ENDIAN)
#define ld_swap64(s, d) (d = __builtin_bswap64(*(s)))
#define st_swap64(s, d) (*(d) = __builtin_bswap64(s))
#else
#define ld_swap64(s, d) (d = *(s))
#define st_swap64(s, d) (*(d) = s)
#endif
#define hashState224(x) ((x)->pipe->p256)
#define hashState256(x) ((x)->pipe->p256)
#define hashState384(x) ((x)->pipe->p512)
#define hashState512(x) ((x)->pipe->p512)
/* rotate shortcuts */
#define rotl32(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define rotr32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#define rotl64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#define rotr64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#if !defined(__C99_RESTRICT)
#define restrict /* restrict */
#endif
#define EDONR_VALID_HASHBITLEN(x) \
((x) == 512 || (x) == 384 || (x) == 256 || (x) == 224)
/* EdonR224 initial double chaining pipe */
static const uint32_t i224p2[16] = {
0x00010203ul, 0x04050607ul, 0x08090a0bul, 0x0c0d0e0ful,
0x10111213ul, 0x14151617ul, 0x18191a1bul, 0x1c1d1e1ful,
0x20212223ul, 0x24252627ul, 0x28292a2bul, 0x2c2d2e2ful,
0x30313233ul, 0x34353637ul, 0x38393a3bul, 0x3c3d3e3ful,
};
/* EdonR256 initial double chaining pipe */
static const uint32_t i256p2[16] = {
0x40414243ul, 0x44454647ul, 0x48494a4bul, 0x4c4d4e4ful,
0x50515253ul, 0x54555657ul, 0x58595a5bul, 0x5c5d5e5ful,
0x60616263ul, 0x64656667ul, 0x68696a6bul, 0x6c6d6e6ful,
0x70717273ul, 0x74757677ul, 0x78797a7bul, 0x7c7d7e7ful,
};
/* EdonR384 initial double chaining pipe */
static const uint64_t i384p2[16] = {
0x0001020304050607ull, 0x08090a0b0c0d0e0full,
0x1011121314151617ull, 0x18191a1b1c1d1e1full,
0x2021222324252627ull, 0x28292a2b2c2d2e2full,
0x3031323334353637ull, 0x38393a3b3c3d3e3full,
0x4041424344454647ull, 0x48494a4b4c4d4e4full,
0x5051525354555657ull, 0x58595a5b5c5d5e5full,
0x6061626364656667ull, 0x68696a6b6c6d6e6full,
0x7071727374757677ull, 0x78797a7b7c7d7e7full
};
/* EdonR512 initial double chaining pipe */
static const uint64_t i512p2[16] = {
@ -101,296 +68,66 @@ static const uint64_t i512p2[16] = {
0xf0f1f2f3f4f5f6f7ull, 0xf8f9fafbfcfdfeffull
};
/*
* First Latin Square
* 0 7 1 3 2 4 6 5
* 4 1 7 6 3 0 5 2
* 7 0 4 2 5 3 1 6
* 1 4 0 5 6 2 7 3
* 2 3 6 7 1 5 0 4
* 5 2 3 1 7 6 4 0
* 3 6 5 0 4 7 2 1
* 6 5 2 4 0 1 3 7
*/
#define LS1_256(c, x0, x1, x2, x3, x4, x5, x6, x7) \
{ \
uint32_t x04, x17, x23, x56, x07, x26; \
x04 = x0+x4, x17 = x1+x7, x07 = x04+x17; \
s0 = c + x07 + x2; \
s1 = rotl32(x07 + x3, 4); \
s2 = rotl32(x07 + x6, 8); \
x23 = x2 + x3; \
s5 = rotl32(x04 + x23 + x5, 22); \
x56 = x5 + x6; \
s6 = rotl32(x17 + x56 + x0, 24); \
x26 = x23+x56; \
s3 = rotl32(x26 + x7, 13); \
s4 = rotl32(x26 + x1, 17); \
s7 = rotl32(x26 + x4, 29); \
#define LS1_512(x0, x1, x2, x3, x4, x5, x6, x7) \
{ \
MEMORY_BARRIER \
z1 = x0 + x4, z2 = x1 + x7; z5 = z1 + z2; \
s0 = 0xaaaaaaaaaaaaaaaaull + z5 + x2; \
s1 = rotl64(z5 + x3, 5); \
s2 = rotl64(z5 + x6, 15); z3 = x2 + x3; \
s5 = rotl64(z1 + z3 + x5, 40); z4 = x5 + x6; \
s6 = rotl64(z2 + z4 + x0, 50); z6 = z3 + z4; \
s3 = rotl64(z6 + x7, 22); \
s4 = rotl64(z6 + x1, 31); \
s7 = rotl64(z6 + x4, 59); \
}
#define LS1_512(c, x0, x1, x2, x3, x4, x5, x6, x7) \
{ \
uint64_t x04, x17, x23, x56, x07, x26; \
x04 = x0+x4, x17 = x1+x7, x07 = x04+x17; \
s0 = c + x07 + x2; \
s1 = rotl64(x07 + x3, 5); \
s2 = rotl64(x07 + x6, 15); \
x23 = x2 + x3; \
s5 = rotl64(x04 + x23 + x5, 40); \
x56 = x5 + x6; \
s6 = rotl64(x17 + x56 + x0, 50); \
x26 = x23+x56; \
s3 = rotl64(x26 + x7, 22); \
s4 = rotl64(x26 + x1, 31); \
s7 = rotl64(x26 + x4, 59); \
#define LS2_512(y0, y1, y2, y3, y4, y5, y6, y7) \
{ \
z1 = y0 + y1, z2 = y2 + y5; z6 = z1 + z2; \
t0 = ~0xaaaaaaaaaaaaaaaaull + z6 + y7; \
t2 = rotl64(z6 + y3, 19); \
z3 = y3 + y4, z5 = z1 + z3; \
t1 = rotl64(z5 + y6, 10); \
t4 = rotl64(z5 + y5, 36); \
z4 = y6 + y7, z8 = z3 + z4; \
t3 = rotl64(z8 + y2, 29); \
t7 = rotl64(z8 + y0, 55); z7 = z2 + z4; \
t5 = rotl64(z7 + y4, 44); \
t6 = rotl64(z7 + y1, 48); \
}
/*
* Second Orthogonal Latin Square
* 0 4 2 3 1 6 5 7
* 7 6 3 2 5 4 1 0
* 5 3 1 6 0 2 7 4
* 1 0 5 4 3 7 2 6
* 2 1 0 7 4 5 6 3
* 3 5 7 0 6 1 4 2
* 4 7 6 1 2 0 3 5
* 6 2 4 5 7 3 0 1
*/
#define LS2_256(c, y0, y1, y2, y3, y4, y5, y6, y7) \
{ \
uint32_t y01, y25, y34, y67, y04, y05, y27, y37; \
y01 = y0+y1, y25 = y2+y5, y05 = y01+y25; \
t0 = ~c + y05 + y7; \
t2 = rotl32(y05 + y3, 9); \
y34 = y3+y4, y04 = y01+y34; \
t1 = rotl32(y04 + y6, 5); \
t4 = rotl32(y04 + y5, 15); \
y67 = y6+y7, y37 = y34+y67; \
t3 = rotl32(y37 + y2, 11); \
t7 = rotl32(y37 + y0, 27); \
y27 = y25+y67; \
t5 = rotl32(y27 + y4, 20); \
t6 = rotl32(y27 + y1, 25); \
#define QEF_512(r0, r1, r2, r3, r4, r5, r6, r7) \
{ \
z1 = s0 ^ s4, z5 = t0 ^ t1; \
r0 = (z1 ^ s1) + (z5 ^ t5); z8 = t6 ^ t7; \
r1 = (z1 ^ s7) + (t2 ^ z8); z3 = s2 ^ s3; \
r7 = (z3 ^ s5) + (t4 ^ z8); z7 = t3 ^ t4; \
r3 = (z3 ^ s4) + (t0 ^ z7); z4 = s5 ^ s6; \
r5 = (s3 ^ z4) + (z7 ^ t6); z6 = t2 ^ t5; \
r6 = (s2 ^ z4) + (z6 ^ t7); z2 = s1 ^ s7; \
r4 = (s0 ^ z2) + (t1 ^ z6); \
r2 = (z2 ^ s6) + (z5 ^ t3); \
}
#define LS2_512(c, y0, y1, y2, y3, y4, y5, y6, y7) \
{ \
uint64_t y01, y25, y34, y67, y04, y05, y27, y37; \
y01 = y0+y1, y25 = y2+y5, y05 = y01+y25; \
t0 = ~c + y05 + y7; \
t2 = rotl64(y05 + y3, 19); \
y34 = y3+y4, y04 = y01+y34; \
t1 = rotl64(y04 + y6, 10); \
t4 = rotl64(y04 + y5, 36); \
y67 = y6+y7, y37 = y34+y67; \
t3 = rotl64(y37 + y2, 29); \
t7 = rotl64(y37 + y0, 55); \
y27 = y25+y67; \
t5 = rotl64(y27 + y4, 44); \
t6 = rotl64(y27 + y1, 48); \
}
#define quasi_exform256(r0, r1, r2, r3, r4, r5, r6, r7) \
{ \
uint32_t s04, s17, s23, s56, t01, t25, t34, t67; \
s04 = s0 ^ s4, t01 = t0 ^ t1; \
r0 = (s04 ^ s1) + (t01 ^ t5); \
t67 = t6 ^ t7; \
r1 = (s04 ^ s7) + (t2 ^ t67); \
s23 = s2 ^ s3; \
r7 = (s23 ^ s5) + (t4 ^ t67); \
t34 = t3 ^ t4; \
r3 = (s23 ^ s4) + (t0 ^ t34); \
s56 = s5 ^ s6; \
r5 = (s3 ^ s56) + (t34 ^ t6); \
t25 = t2 ^ t5; \
r6 = (s2 ^ s56) + (t25 ^ t7); \
s17 = s1 ^ s7; \
r4 = (s0 ^ s17) + (t1 ^ t25); \
r2 = (s17 ^ s6) + (t01 ^ t3); \
}
#define quasi_exform512(r0, r1, r2, r3, r4, r5, r6, r7) \
{ \
uint64_t s04, s17, s23, s56, t01, t25, t34, t67; \
s04 = s0 ^ s4, t01 = t0 ^ t1; \
r0 = (s04 ^ s1) + (t01 ^ t5); \
t67 = t6 ^ t7; \
r1 = (s04 ^ s7) + (t2 ^ t67); \
s23 = s2 ^ s3; \
r7 = (s23 ^ s5) + (t4 ^ t67); \
t34 = t3 ^ t4; \
r3 = (s23 ^ s4) + (t0 ^ t34); \
s56 = s5 ^ s6; \
r5 = (s3 ^ s56) + (t34 ^ t6); \
t25 = t2 ^ t5; \
r6 = (s2 ^ s56) + (t25 ^ t7); \
s17 = s1 ^ s7; \
r4 = (s0 ^ s17) + (t1 ^ t25); \
r2 = (s17 ^ s6) + (t01 ^ t3); \
}
static size_t
Q256(size_t bitlen, const uint32_t *data, uint32_t *restrict p)
{
size_t bl;
for (bl = bitlen; bl >= EdonR256_BLOCK_BITSIZE;
bl -= EdonR256_BLOCK_BITSIZE, data += 16) {
uint32_t s0, s1, s2, s3, s4, s5, s6, s7, t0, t1, t2, t3, t4,
t5, t6, t7;
uint32_t p0, p1, p2, p3, p4, p5, p6, p7, q0, q1, q2, q3, q4,
q5, q6, q7;
const uint32_t defix = 0xaaaaaaaa;
#if defined(MACHINE_IS_BIG_ENDIAN)
uint32_t swp0, swp1, swp2, swp3, swp4, swp5, swp6, swp7, swp8,
swp9, swp10, swp11, swp12, swp13, swp14, swp15;
#define d(j) swp ## j
#define s32(j) ld_swap32((uint32_t *)data + j, swp ## j)
#else
#define d(j) data[j]
#endif
/* First row of quasigroup e-transformations */
#if defined(MACHINE_IS_BIG_ENDIAN)
s32(8);
s32(9);
s32(10);
s32(11);
s32(12);
s32(13);
s32(14);
s32(15);
#endif
LS1_256(defix, d(15), d(14), d(13), d(12), d(11), d(10), d(9),
d(8));
#if defined(MACHINE_IS_BIG_ENDIAN)
s32(0);
s32(1);
s32(2);
s32(3);
s32(4);
s32(5);
s32(6);
s32(7);
#undef s32
#endif
LS2_256(defix, d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7));
quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_256(defix, d(8), d(9), d(10), d(11), d(12), d(13), d(14),
d(15));
quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
/* Second row of quasigroup e-transformations */
LS1_256(defix, p[8], p[9], p[10], p[11], p[12], p[13], p[14],
p[15]);
LS2_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_256(defix, q0, q1, q2, q3, q4, q5, q6, q7);
quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
/* Third row of quasigroup e-transformations */
LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_256(defix, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_256(defix, q0, q1, q2, q3, q4, q5, q6, q7);
LS2_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
/* Fourth row of quasigroup e-transformations */
LS1_256(defix, d(7), d(6), d(5), d(4), d(3), d(2), d(1), d(0));
LS2_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_256(defix, q0, q1, q2, q3, q4, q5, q6, q7);
quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
/* Edon-R tweak on the original SHA-3 Edon-R submission. */
p[0] ^= d(8) ^ p0;
p[1] ^= d(9) ^ p1;
p[2] ^= d(10) ^ p2;
p[3] ^= d(11) ^ p3;
p[4] ^= d(12) ^ p4;
p[5] ^= d(13) ^ p5;
p[6] ^= d(14) ^ p6;
p[7] ^= d(15) ^ p7;
p[8] ^= d(0) ^ q0;
p[9] ^= d(1) ^ q1;
p[10] ^= d(2) ^ q2;
p[11] ^= d(3) ^ q3;
p[12] ^= d(4) ^ q4;
p[13] ^= d(5) ^ q5;
p[14] ^= d(6) ^ q6;
p[15] ^= d(7) ^ q7;
}
#undef d
return (bitlen - bl);
}
/*
* Why is this #pragma here?
*
* Checksum functions like this one can go over the stack frame size check
* Linux imposes on 32-bit platforms (-Wframe-larger-than=1024). We can
* safely ignore the compiler error since we know that in OpenZFS, that
* the function will be called from a worker thread that won't be using
* much stack. The only function that goes over the 1k limit is Q512(),
* which only goes over it by a hair (1248 bytes on ARM32).
*/
#include <sys/isa_defs.h> /* for _ILP32 */
#if defined(_ILP32) /* We're 32-bit, assume small stack frames */
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic ignored "-Wframe-larger-than="
#endif
#endif
#if defined(__IBMC__) && defined(_AIX) && defined(__64BIT__)
static inline size_t
#else
static size_t
#endif
Q512(size_t bitlen, const uint64_t *data, uint64_t *restrict p)
Q512(size_t bitlen, const uint64_t *data, uint64_t *p)
{
size_t bl;
for (bl = bitlen; bl >= EdonR512_BLOCK_BITSIZE;
bl -= EdonR512_BLOCK_BITSIZE, data += 16) {
uint64_t s0, s1, s2, s3, s4, s5, s6, s7, t0, t1, t2, t3, t4,
t5, t6, t7;
uint64_t p0, p1, p2, p3, p4, p5, p6, p7, q0, q1, q2, q3, q4,
q5, q6, q7;
const uint64_t defix = 0xaaaaaaaaaaaaaaaaull;
#if defined(MACHINE_IS_BIG_ENDIAN)
uint64_t swp0, swp1, swp2, swp3, swp4, swp5, swp6, swp7, swp8,
swp9, swp10, swp11, swp12, swp13, swp14, swp15;
uint64_t q0, q1, q2, q3, q4, q5, q6, q7;
uint64_t p0, p1, p2, p3, p4, p5, p6, p7;
uint64_t s0, s1, s2, s3, s4, s5, s6, s7;
uint64_t t0, t1, t2, t3, t4, t5, t6, t7;
uint64_t z1, z2, z3, z4, z5, z6, z7, z8;
#if defined(_ZFS_BIG_ENDIAN)
uint64_t swp0, swp1, swp2, swp3, swp4, swp5, swp6, swp7,
swp8, swp9, swp10, swp11, swp12, swp13, swp14, swp15;
#define d(j) swp##j
#define s64(j) ld_swap64((uint64_t *)data+j, swp##j)
#else
#define d(j) data[j]
#endif
/* First row of quasigroup e-transformations */
#if defined(MACHINE_IS_BIG_ENDIAN)
s64(8);
s64(9);
s64(10);
s64(11);
s64(12);
s64(13);
s64(14);
s64(15);
#endif
LS1_512(defix, d(15), d(14), d(13), d(12), d(11), d(10), d(9),
d(8));
#if defined(MACHINE_IS_BIG_ENDIAN)
s64(0);
s64(1);
s64(2);
@ -399,43 +136,53 @@ Q512(size_t bitlen, const uint64_t *data, uint64_t *restrict p)
s64(5);
s64(6);
s64(7);
#undef s64
s64(8);
s64(9);
s64(10);
s64(11);
s64(12);
s64(13);
s64(14);
s64(15);
#else
#define d(j) data[j]
#endif
LS2_512(defix, d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7));
quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(defix, d(8), d(9), d(10), d(11), d(12), d(13), d(14),
d(15));
quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
/* First row of quasigroup e-transformations */
LS1_512(d(15), d(14), d(13), d(12), d(11), d(10), d(9), d(8));
LS2_512(d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7));
QEF_512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(d(8), d(9), d(10), d(11), d(12), d(13), d(14), d(15));
QEF_512(q0, q1, q2, q3, q4, q5, q6, q7);
/* Second row of quasigroup e-transformations */
LS1_512(defix, p[8], p[9], p[10], p[11], p[12], p[13], p[14],
p[15]);
LS2_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
LS2_512(p0, p1, p2, p3, p4, p5, p6, p7);
QEF_512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(defix, q0, q1, q2, q3, q4, q5, q6, q7);
quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
LS1_512(p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(q0, q1, q2, q3, q4, q5, q6, q7);
QEF_512(q0, q1, q2, q3, q4, q5, q6, q7);
/* Third row of quasigroup e-transformations */
LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(defix, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
QEF_512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(defix, q0, q1, q2, q3, q4, q5, q6, q7);
LS2_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
LS1_512(q0, q1, q2, q3, q4, q5, q6, q7);
LS2_512(p0, p1, p2, p3, p4, p5, p6, p7);
QEF_512(q0, q1, q2, q3, q4, q5, q6, q7);
/* Fourth row of quasigroup e-transformations */
LS1_512(defix, d(7), d(6), d(5), d(4), d(3), d(2), d(1), d(0));
LS2_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(d(7), d(6), d(5), d(4), d(3), d(2), d(1), d(0));
LS2_512(p0, p1, p2, p3, p4, p5, p6, p7);
QEF_512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(defix, q0, q1, q2, q3, q4, q5, q6, q7);
quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
LS1_512(p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(q0, q1, q2, q3, q4, q5, q6, q7);
QEF_512(q0, q1, q2, q3, q4, q5, q6, q7);
/* Edon-R tweak on the original SHA-3 Edon-R submission. */
p[0] ^= d(8) ^ p0;
@ -456,293 +203,115 @@ Q512(size_t bitlen, const uint64_t *data, uint64_t *restrict p)
p[15] ^= d(7) ^ q7;
}
#undef s64
#undef d
return (bitlen - bl);
}
void
EdonRInit(EdonRState *state, size_t hashbitlen)
EdonRInit(EdonRState *state)
{
ASSERT(EDONR_VALID_HASHBITLEN(hashbitlen));
switch (hashbitlen) {
case 224:
state->hashbitlen = 224;
state->bits_processed = 0;
state->unprocessed_bits = 0;
memcpy(hashState224(state)->DoublePipe, i224p2,
sizeof (i224p2));
break;
case 256:
state->hashbitlen = 256;
state->bits_processed = 0;
state->unprocessed_bits = 0;
memcpy(hashState256(state)->DoublePipe, i256p2,
sizeof (i256p2));
break;
case 384:
state->hashbitlen = 384;
state->bits_processed = 0;
state->unprocessed_bits = 0;
memcpy(hashState384(state)->DoublePipe, i384p2,
sizeof (i384p2));
break;
case 512:
state->hashbitlen = 512;
state->bits_processed = 0;
state->unprocessed_bits = 0;
memcpy(hashState512(state)->DoublePipe, i512p2,
sizeof (i512p2));
break;
}
state->bits_processed = 0;
state->unprocessed_bits = 0;
memcpy(hashState512(state)->DoublePipe, i512p2, sizeof (i512p2));
}
void
EdonRUpdate(EdonRState *state, const uint8_t *data, size_t databitlen)
{
uint32_t *data32;
uint64_t *data64;
size_t bits_processed;
ASSERT(EDONR_VALID_HASHBITLEN(state->hashbitlen));
switch (state->hashbitlen) {
case 224:
case 256:
if (state->unprocessed_bits > 0) {
/* LastBytes = databitlen / 8 */
int LastBytes = (int)databitlen >> 3;
if (state->unprocessed_bits > 0) {
/* LastBytes = databitlen / 8 */
int LastBytes = (int)databitlen >> 3;
ASSERT(state->unprocessed_bits + databitlen <=
EdonR256_BLOCK_SIZE * 8);
ASSERT(state->unprocessed_bits + databitlen <=
EdonR512_BLOCK_SIZE * 8);
memcpy(hashState256(state)->LastPart
+ (state->unprocessed_bits >> 3),
data, LastBytes);
state->unprocessed_bits += (int)databitlen;
databitlen = state->unprocessed_bits;
/* LINTED E_BAD_PTR_CAST_ALIGN */
data32 = (uint32_t *)hashState256(state)->LastPart;
} else
/* LINTED E_BAD_PTR_CAST_ALIGN */
data32 = (uint32_t *)data;
memcpy(hashState512(state)->LastPart
+ (state->unprocessed_bits >> 3), data, LastBytes);
state->unprocessed_bits += (int)databitlen;
databitlen = state->unprocessed_bits;
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)hashState512(state)->LastPart;
} else
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)data;
bits_processed = Q256(databitlen, data32,
hashState256(state)->DoublePipe);
state->bits_processed += bits_processed;
databitlen -= bits_processed;
state->unprocessed_bits = (int)databitlen;
if (databitlen > 0) {
/* LastBytes = Ceil(databitlen / 8) */
int LastBytes =
((~(((-(int)databitlen) >> 3) & 0x01ff)) +
1) & 0x01ff;
bits_processed = Q512(databitlen, data64,
hashState512(state)->DoublePipe);
state->bits_processed += bits_processed;
databitlen -= bits_processed;
state->unprocessed_bits = (int)databitlen;
if (databitlen > 0) {
/* LastBytes = Ceil(databitlen / 8) */
int LastBytes = ((~(((-(int)databitlen) >> 3) & 0x03ff)) + 1) \
& 0x03ff;
data32 += bits_processed >> 5; /* byte size update */
memmove(hashState256(state)->LastPart,
data32, LastBytes);
}
break;
case 384:
case 512:
if (state->unprocessed_bits > 0) {
/* LastBytes = databitlen / 8 */
int LastBytes = (int)databitlen >> 3;
ASSERT(state->unprocessed_bits + databitlen <=
EdonR512_BLOCK_SIZE * 8);
memcpy(hashState512(state)->LastPart
+ (state->unprocessed_bits >> 3),
data, LastBytes);
state->unprocessed_bits += (int)databitlen;
databitlen = state->unprocessed_bits;
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)hashState512(state)->LastPart;
} else
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)data;
bits_processed = Q512(databitlen, data64,
hashState512(state)->DoublePipe);
state->bits_processed += bits_processed;
databitlen -= bits_processed;
state->unprocessed_bits = (int)databitlen;
if (databitlen > 0) {
/* LastBytes = Ceil(databitlen / 8) */
int LastBytes =
((~(((-(int)databitlen) >> 3) & 0x03ff)) +
1) & 0x03ff;
data64 += bits_processed >> 6; /* byte size update */
memmove(hashState512(state)->LastPart,
data64, LastBytes);
}
break;
data64 += bits_processed >> 6; /* byte size update */
memmove(hashState512(state)->LastPart, data64, LastBytes);
}
}
void
EdonRFinal(EdonRState *state, uint8_t *hashval)
{
uint32_t *data32;
uint64_t *data64, num_bits;
size_t databitlen;
int LastByte, PadOnePosition;
num_bits = state->bits_processed + state->unprocessed_bits;
ASSERT(EDONR_VALID_HASHBITLEN(state->hashbitlen));
switch (state->hashbitlen) {
case 224:
case 256:
LastByte = (int)state->unprocessed_bits >> 3;
PadOnePosition = 7 - (state->unprocessed_bits & 0x07);
hashState256(state)->LastPart[LastByte] =
(hashState256(state)->LastPart[LastByte]
& (0xff << (PadOnePosition + 1))) ^
(0x01 << PadOnePosition);
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)hashState256(state)->LastPart;
LastByte = (int)state->unprocessed_bits >> 3;
PadOnePosition = 7 - (state->unprocessed_bits & 0x07);
hashState512(state)->LastPart[LastByte] =
(hashState512(state)->LastPart[LastByte] \
& (0xff << (PadOnePosition + 1))) ^ (0x01 << PadOnePosition);
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)hashState512(state)->LastPart;
if (state->unprocessed_bits < 448) {
(void) memset((hashState256(state)->LastPart) +
LastByte + 1, 0x00,
EdonR256_BLOCK_SIZE - LastByte - 9);
databitlen = EdonR256_BLOCK_SIZE * 8;
#if defined(MACHINE_IS_BIG_ENDIAN)
st_swap64(num_bits, data64 + 7);
if (state->unprocessed_bits < 960) {
memset((hashState512(state)->LastPart) +
LastByte + 1, 0x00, EdonR512_BLOCK_SIZE - LastByte - 9);
databitlen = EdonR512_BLOCK_SIZE * 8;
#if defined(_ZFS_BIG_ENDIAN)
st_swap64(num_bits, data64 + 15);
#else
data64[7] = num_bits;
data64[15] = num_bits;
#endif
} else {
(void) memset((hashState256(state)->LastPart) +
LastByte + 1, 0x00,
EdonR256_BLOCK_SIZE * 2 - LastByte - 9);
databitlen = EdonR256_BLOCK_SIZE * 16;
#if defined(MACHINE_IS_BIG_ENDIAN)
st_swap64(num_bits, data64 + 15);
} else {
memset((hashState512(state)->LastPart) + LastByte + 1,
0x00, EdonR512_BLOCK_SIZE * 2 - LastByte - 9);
databitlen = EdonR512_BLOCK_SIZE * 16;
#if defined(_ZFS_BIG_ENDIAN)
st_swap64(num_bits, data64 + 31);
#else
data64[15] = num_bits;
data64[31] = num_bits;
#endif
}
/* LINTED E_BAD_PTR_CAST_ALIGN */
data32 = (uint32_t *)hashState256(state)->LastPart;
state->bits_processed += Q256(databitlen, data32,
hashState256(state)->DoublePipe);
break;
case 384:
case 512:
LastByte = (int)state->unprocessed_bits >> 3;
PadOnePosition = 7 - (state->unprocessed_bits & 0x07);
hashState512(state)->LastPart[LastByte] =
(hashState512(state)->LastPart[LastByte]
& (0xff << (PadOnePosition + 1))) ^
(0x01 << PadOnePosition);
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)hashState512(state)->LastPart;
if (state->unprocessed_bits < 960) {
(void) memset((hashState512(state)->LastPart) +
LastByte + 1, 0x00,
EdonR512_BLOCK_SIZE - LastByte - 9);
databitlen = EdonR512_BLOCK_SIZE * 8;
#if defined(MACHINE_IS_BIG_ENDIAN)
st_swap64(num_bits, data64 + 15);
#else
data64[15] = num_bits;
#endif
} else {
(void) memset((hashState512(state)->LastPart) +
LastByte + 1, 0x00,
EdonR512_BLOCK_SIZE * 2 - LastByte - 9);
databitlen = EdonR512_BLOCK_SIZE * 16;
#if defined(MACHINE_IS_BIG_ENDIAN)
st_swap64(num_bits, data64 + 31);
#else
data64[31] = num_bits;
#endif
}
state->bits_processed += Q512(databitlen, data64,
hashState512(state)->DoublePipe);
break;
}
switch (state->hashbitlen) {
case 224: {
#if defined(MACHINE_IS_BIG_ENDIAN)
uint32_t *d32 = (uint32_t *)hashval;
uint32_t *s32 = hashState224(state)->DoublePipe + 9;
int j;
state->bits_processed += Q512(databitlen, data64,
hashState512(state)->DoublePipe);
for (j = 0; j < EdonR224_DIGEST_SIZE >> 2; j++)
st_swap32(s32[j], d32 + j);
#else
memcpy(hashval, hashState256(state)->DoublePipe + 9,
EdonR224_DIGEST_SIZE);
#endif
break;
}
case 256: {
#if defined(MACHINE_IS_BIG_ENDIAN)
uint32_t *d32 = (uint32_t *)hashval;
uint32_t *s32 = hashState224(state)->DoublePipe + 8;
int j;
#if defined(_ZFS_BIG_ENDIAN)
data64 = (uint64_t *)hashval;
uint64_t *s64 = hashState512(state)->DoublePipe + 8;
int j;
for (j = 0; j < EdonR256_DIGEST_SIZE >> 2; j++)
st_swap32(s32[j], d32 + j);
for (j = 0; j < EdonR512_DIGEST_SIZE >> 3; j++)
st_swap64(s64[j], data64 + j);
#else
memcpy(hashval, hashState256(state)->DoublePipe + 8,
EdonR256_DIGEST_SIZE);
memcpy(hashval, hashState512(state)->DoublePipe + 8,
EdonR512_DIGEST_SIZE);
#endif
break;
}
case 384: {
#if defined(MACHINE_IS_BIG_ENDIAN)
uint64_t *d64 = (uint64_t *)hashval;
uint64_t *s64 = hashState384(state)->DoublePipe + 10;
int j;
for (j = 0; j < EdonR384_DIGEST_SIZE >> 3; j++)
st_swap64(s64[j], d64 + j);
#else
memcpy(hashval, hashState384(state)->DoublePipe + 10,
EdonR384_DIGEST_SIZE);
#endif
break;
}
case 512: {
#if defined(MACHINE_IS_BIG_ENDIAN)
uint64_t *d64 = (uint64_t *)hashval;
uint64_t *s64 = hashState512(state)->DoublePipe + 8;
int j;
for (j = 0; j < EdonR512_DIGEST_SIZE >> 3; j++)
st_swap64(s64[j], d64 + j);
#else
memcpy(hashval, hashState512(state)->DoublePipe + 8,
EdonR512_DIGEST_SIZE);
#endif
break;
}
}
}
void
EdonRHash(size_t hashbitlen, const uint8_t *data, size_t databitlen,
uint8_t *hashval)
EdonRHash(const uint8_t *data, size_t databitlen, uint8_t *hashval)
{
EdonRState state;
EdonRInit(&state, hashbitlen);
EdonRInit(&state);
EdonRUpdate(&state, data, databitlen);
EdonRFinal(&state, hashval);
}

View File

@ -1,216 +0,0 @@
/*
* IDI,NTNU
*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Copyright (C) 2009, 2010, Jorn Amundsen <jorn.amundsen@ntnu.no>
*
* C header file to determine compile machine byte order. Take care when cross
* compiling.
*
* $Id: byteorder.h 517 2013-02-17 20:34:39Z joern $
*/
/*
* Portions copyright (c) 2013, Saso Kiselkov, All rights reserved
*/
#ifndef _CRYPTO_EDONR_BYTEORDER_H
#define _CRYPTO_EDONR_BYTEORDER_H
#include <sys/sysmacros.h>
#include <sys/param.h>
#if defined(__BYTE_ORDER)
#if (__BYTE_ORDER == __BIG_ENDIAN)
#define MACHINE_IS_BIG_ENDIAN
#elif (__BYTE_ORDER == __LITTLE_ENDIAN)
#define MACHINE_IS_LITTLE_ENDIAN
#endif
#elif defined(BYTE_ORDER)
#if (BYTE_ORDER == BIG_ENDIAN)
#define MACHINE_IS_BIG_ENDIAN
#elif (BYTE_ORDER == LITTLE_ENDIAN)
#define MACHINE_IS_LITTLE_ENDIAN
#endif
#endif /* __BYTE_ORDER || BYTE_ORDER */
#if !defined(MACHINE_IS_BIG_ENDIAN) && !defined(MACHINE_IS_LITTLE_ENDIAN)
#if defined(_ZFS_BIG_ENDIAN) || defined(_MIPSEB)
#define MACHINE_IS_BIG_ENDIAN
#endif
#if defined(_ZFS_LITTLE_ENDIAN) || defined(_MIPSEL)
#define MACHINE_IS_LITTLE_ENDIAN
#endif
#endif /* !MACHINE_IS_BIG_ENDIAN && !MACHINE_IS_LITTLE_ENDIAN */
#if !defined(MACHINE_IS_BIG_ENDIAN) && !defined(MACHINE_IS_LITTLE_ENDIAN)
#error unknown machine byte order
#endif
#define BYTEORDER_INCLUDED
#if defined(MACHINE_IS_BIG_ENDIAN)
/*
* Byte swapping macros for big endian architectures and compilers,
* add as appropriate for other architectures and/or compilers.
*
* ld_swap64(src,dst) : uint64_t dst = *(src)
* st_swap64(src,dst) : *(dst) = uint64_t src
*/
#if defined(__PPC__) || defined(_ARCH_PPC)
#if defined(__64BIT__)
#if defined(_ARCH_PWR7)
#define aix_ld_swap64(s64, d64)\
__asm__("ldbrx %0,0,%1" : "=r"(d64) : "r"(s64))
#define aix_st_swap64(s64, d64)\
__asm__ volatile("stdbrx %1,0,%0" : : "r"(d64), "r"(s64))
#else
#define aix_ld_swap64(s64, d64) \
{ \
uint64_t *s4 = 0, h; /* initialize to zero for gcc warning */ \
\
__asm__("addi %0,%3,4;lwbrx %1,0,%3;lwbrx %2,0,%0;rldimi %1,%2,32,0"\
: "+r"(s4), "=r"(d64), "=r"(h) : "b"(s64)); \
}
#define aix_st_swap64(s64, d64) \
{ \
uint64_t *s4 = 0, h; /* initialize to zero for gcc warning */ \
h = (s64) >> 32; \
__asm__ volatile("addi %0,%3,4;stwbrx %1,0,%3;stwbrx %2,0,%0" \
: "+r"(s4) : "r"(s64), "r"(h), "b"(d64)); \
}
#endif /* 64BIT && PWR7 */
#else
#define aix_ld_swap64(s64, d64) \
{ \
uint32_t *s4 = 0, h, l; /* initialize to zero for gcc warning */\
__asm__("addi %0,%3,4;lwbrx %1,0,%3;lwbrx %2,0,%0" \
: "+r"(s4), "=r"(l), "=r"(h) : "b"(s64)); \
d64 = ((uint64_t)h<<32) | l; \
}
#define aix_st_swap64(s64, d64) \
{ \
uint32_t *s4 = 0, h, l; /* initialize to zero for gcc warning */\
l = (s64) & 0xfffffffful, h = (s64) >> 32; \
__asm__ volatile("addi %0,%3,4;stwbrx %1,0,%3;stwbrx %2,0,%0" \
: "+r"(s4) : "r"(l), "r"(h), "b"(d64)); \
}
#endif /* __64BIT__ */
#define aix_ld_swap32(s32, d32)\
__asm__("lwbrx %0,0,%1" : "=r"(d32) : "r"(s32))
#define aix_st_swap32(s32, d32)\
__asm__ volatile("stwbrx %1,0,%0" : : "r"(d32), "r"(s32))
#define ld_swap32(s, d) aix_ld_swap32(s, d)
#define st_swap32(s, d) aix_st_swap32(s, d)
#define ld_swap64(s, d) aix_ld_swap64(s, d)
#define st_swap64(s, d) aix_st_swap64(s, d)
#endif /* __PPC__ || _ARCH_PPC */
#if defined(__sparc)
#if !defined(__arch64__) && !defined(__sparcv8) && defined(__sparcv9)
#define __arch64__
#endif
#if defined(__GNUC__) || (defined(__SUNPRO_C) && __SUNPRO_C > 0x590)
/* need Sun Studio C 5.10 and above for GNU inline assembly */
#if defined(__arch64__)
#define sparc_ld_swap64(s64, d64) \
__asm__("ldxa [%1]0x88,%0" : "=r"(d64) : "r"(s64))
#define sparc_st_swap64(s64, d64) \
__asm__ volatile("stxa %0,[%1]0x88" : : "r"(s64), "r"(d64))
#define st_swap64(s, d) sparc_st_swap64(s, d)
#else
#define sparc_ld_swap64(s64, d64) \
{ \
uint32_t *s4, h, l; \
__asm__("add %3,4,%0\n\tlda [%3]0x88,%1\n\tlda [%0]0x88,%2" \
: "+r"(s4), "=r"(l), "=r"(h) : "r"(s64)); \
d64 = ((uint64_t)h<<32) | l; \
}
#define sparc_st_swap64(s64, d64) \
{ \
uint32_t *s4, h, l; \
l = (s64) & 0xfffffffful, h = (s64) >> 32; \
__asm__ volatile("add %3,4,%0\n\tsta %1,[%3]0x88\n\tsta %2,[%0]0x88"\
: "+r"(s4) : "r"(l), "r"(h), "r"(d64)); \
}
#endif /* sparc64 */
#define sparc_ld_swap32(s32, d32)\
__asm__("lda [%1]0x88,%0" : "=r"(d32) : "r"(s32))
#define sparc_st_swap32(s32, d32)\
__asm__ volatile("sta %0,[%1]0x88" : : "r"(s32), "r"(d32))
#define ld_swap32(s, d) sparc_ld_swap32(s, d)
#define st_swap32(s, d) sparc_st_swap32(s, d)
#define ld_swap64(s, d) sparc_ld_swap64(s, d)
#define st_swap64(s, d) sparc_st_swap64(s, d)
#endif /* GCC || Sun Studio C > 5.9 */
#endif /* sparc */
/* GCC fallback */
#if ((__GNUC__ >= 4) || defined(__PGIC__)) && !defined(ld_swap32)
#define ld_swap32(s, d) (d = __builtin_bswap32(*(s)))
#define st_swap32(s, d) (*(d) = __builtin_bswap32(s))
#endif /* GCC4/PGIC && !swap32 */
#if ((__GNUC__ >= 4) || defined(__PGIC__)) && !defined(ld_swap64)
#define ld_swap64(s, d) (d = __builtin_bswap64(*(s)))
#define st_swap64(s, d) (*(d) = __builtin_bswap64(s))
#endif /* GCC4/PGIC && !swap64 */
/* generic fallback */
#if !defined(ld_swap32)
#define ld_swap32(s, d) \
(d = (*(s) >> 24) | (*(s) >> 8 & 0xff00) | \
(*(s) << 8 & 0xff0000) | (*(s) << 24))
#define st_swap32(s, d) \
(*(d) = ((s) >> 24) | ((s) >> 8 & 0xff00) | \
((s) << 8 & 0xff0000) | ((s) << 24))
#endif
#if !defined(ld_swap64)
#define ld_swap64(s, d) \
(d = (*(s) >> 56) | (*(s) >> 40 & 0xff00) | \
(*(s) >> 24 & 0xff0000) | (*(s) >> 8 & 0xff000000) | \
(*(s) & 0xff000000) << 8 | (*(s) & 0xff0000) << 24 | \
(*(s) & 0xff00) << 40 | *(s) << 56)
#define st_swap64(s, d) \
(*(d) = ((s) >> 56) | ((s) >> 40 & 0xff00) | \
((s) >> 24 & 0xff0000) | ((s) >> 8 & 0xff000000) | \
((s) & 0xff000000) << 8 | ((s) & 0xff0000) << 24 | \
((s) & 0xff00) << 40 | (s) << 56)
#endif
#endif /* MACHINE_IS_BIG_ENDIAN */
#if defined(MACHINE_IS_LITTLE_ENDIAN)
/* replace swaps with simple assignments on little endian systems */
#undef ld_swap32
#undef st_swap32
#define ld_swap32(s, d) (d = *(s))
#define st_swap32(s, d) (*(d) = s)
#undef ld_swap64
#undef st_swap64
#define ld_swap64(s, d) (d = *(s))
#define st_swap64(s, d) (*(d) = s)
#endif /* MACHINE_IS_LITTLE_ENDIAN */
#endif /* _CRYPTO_EDONR_BYTEORDER_H */

View File

@ -90,17 +90,15 @@ abd_checksum_edonr_tmpl_init(const zio_cksum_salt_t *salt)
*/
_Static_assert(EDONR_BLOCK_SIZE == 2 * (EDONR_MODE / 8),
"Edon-R block size mismatch");
EdonRHash(EDONR_MODE, salt->zcs_bytes, sizeof (salt->zcs_bytes) * 8,
salt_block);
EdonRHash(EDONR_MODE, salt_block, EDONR_MODE, salt_block +
EDONR_MODE / 8);
EdonRHash(salt->zcs_bytes, sizeof (salt->zcs_bytes) * 8, salt_block);
EdonRHash(salt_block, EDONR_MODE, salt_block + EDONR_MODE / 8);
/*
* Feed the new salt block into the hash function - this will serve
* as our MAC key.
*/
ctx = kmem_zalloc(sizeof (*ctx), KM_SLEEP);
EdonRInit(ctx, EDONR_MODE);
EdonRInit(ctx);
EdonRUpdate(ctx, salt_block, sizeof (salt_block) * 8);
return (ctx);
}

View File

@ -41,75 +41,9 @@
* http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/SHA_All.pdf
*/
static const char *test_msg0 = "abc";
static const char *test_msg1 = "abcdbcdecdefdefgefghfghighijhijkijkljklmklm"
"nlmnomnopnopq";
static const char *test_msg2 = "abcdefghbcdefghicdefghijdefghijkefghijklfgh"
static const char *test_msg1 = "abcdefghbcdefghicdefghijdefghijkefghijklfgh"
"ijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu";
/*
* Test digests computed by hand. There's no formal standard or spec for edonr.
*/
static const uint8_t edonr_224_test_digests[][28] = {
{
/* for test_msg0 */
0x56, 0x63, 0xc4, 0x93, 0x95, 0x20, 0xfa, 0xf6,
0x12, 0x31, 0x65, 0xa4, 0x66, 0xf2, 0x56, 0x01,
0x95, 0x2e, 0xa9, 0xe4, 0x24, 0xdd, 0xc9, 0x6b,
0xef, 0xd0, 0x40, 0x94
},
{
/* for test_msg1 */
0xd0, 0x13, 0xe4, 0x87, 0x4d, 0x06, 0x8d, 0xca,
0x4e, 0x14, 0xb9, 0x37, 0x2f, 0xce, 0x12, 0x20,
0x60, 0xf8, 0x5c, 0x0a, 0xfd, 0x7a, 0x7d, 0x97,
0x88, 0x2b, 0x05, 0x75
}
/* no test vector for test_msg2 */
};
static const uint8_t edonr_256_test_digests[][32] = {
{
/* for test_msg0 */
0x54, 0xd7, 0x8b, 0x13, 0xc7, 0x4e, 0xda, 0x5a,
0xed, 0xc2, 0x71, 0xcc, 0x88, 0x1f, 0xb2, 0x2f,
0x83, 0x99, 0xaf, 0xd3, 0x04, 0x0b, 0x6a, 0x39,
0x2d, 0x73, 0x94, 0x05, 0x50, 0x8d, 0xd8, 0x51
},
{
/* for test_msg1 */
0x49, 0x2d, 0x0b, 0x19, 0xab, 0x1e, 0xde, 0x3a,
0xea, 0x9b, 0xf2, 0x39, 0x3a, 0xb1, 0x21, 0xde,
0x21, 0xf6, 0x80, 0x1f, 0xad, 0xbe, 0x8b, 0x07,
0xc7, 0xfb, 0xe6, 0x99, 0x0e, 0x4d, 0x73, 0x63
}
/* no test vectorfor test_msg2 */
};
static const uint8_t edonr_384_test_digests[][48] = {
{
/* for test_msg0 */
0x0e, 0x7c, 0xd7, 0x85, 0x78, 0x77, 0xe0, 0x89,
0x5b, 0x1c, 0xdf, 0x49, 0xf4, 0x1d, 0x20, 0x9c,
0x72, 0x7d, 0x2e, 0x57, 0x9b, 0x9b, 0x9a, 0xdc,
0x60, 0x27, 0x97, 0x82, 0xb9, 0x90, 0x72, 0xec,
0x7e, 0xce, 0xd3, 0x16, 0x5f, 0x47, 0x75, 0x48,
0xfa, 0x60, 0x72, 0x7e, 0x01, 0xc7, 0x7c, 0xc6
},
{
/* no test vector for test_msg1 */
0
},
{
/* for test_msg2 */
0xe2, 0x34, 0xa1, 0x02, 0x83, 0x76, 0xae, 0xe6,
0x82, 0xd9, 0x38, 0x32, 0x0e, 0x00, 0x78, 0xd2,
0x34, 0xdb, 0xb9, 0xbd, 0xf0, 0x08, 0xa8, 0x0f,
0x63, 0x1c, 0x3d, 0x4a, 0xfd, 0x0a, 0xe9, 0x59,
0xdc, 0xd4, 0xce, 0xcd, 0x8d, 0x67, 0x6c, 0xea,
0xbb, 0x1a, 0x32, 0xed, 0x5c, 0x6b, 0xf1, 0x7f
}
};
static const uint8_t edonr_512_test_digests[][64] = {
{
/* for test_msg0 */
@ -127,7 +61,7 @@ static const uint8_t edonr_512_test_digests[][64] = {
0
},
{
/* for test_msg2 */
/* for test_msg1 */
0x53, 0x51, 0x07, 0x0d, 0xc5, 0x1c, 0x3b, 0x2b,
0xac, 0xa5, 0xa6, 0x0d, 0x02, 0x52, 0xcc, 0xb4,
0xe4, 0x92, 0x1a, 0x96, 0xfe, 0x5a, 0x69, 0xe7,
@ -152,7 +86,7 @@ main(int argc, char *argv[])
do { \
EdonRState ctx; \
uint8_t digest[mode / 8]; \
EdonRInit(&ctx, mode); \
EdonRInit(&ctx); \
EdonRUpdate(&ctx, (const uint8_t *) _m, strlen(_m) * 8);\
EdonRFinal(&ctx, digest); \
(void) printf("Edon-R-%-6sMessage: " #_m \
@ -176,7 +110,7 @@ main(int argc, char *argv[])
struct timeval start, end; \
memset(block, 0, sizeof (block)); \
(void) gettimeofday(&start, NULL); \
EdonRInit(&ctx, mode); \
EdonRInit(&ctx); \
for (i = 0; i < 8192; i++) \
EdonRUpdate(&ctx, block, sizeof (block) * 8); \
EdonRFinal(&ctx, digest); \
@ -192,20 +126,13 @@ main(int argc, char *argv[])
} while (0)
(void) printf("Running algorithm correctness tests:\n");
EDONR_ALGO_TEST(test_msg0, 224, edonr_224_test_digests[0]);
EDONR_ALGO_TEST(test_msg1, 224, edonr_224_test_digests[1]);
EDONR_ALGO_TEST(test_msg0, 256, edonr_256_test_digests[0]);
EDONR_ALGO_TEST(test_msg1, 256, edonr_256_test_digests[1]);
EDONR_ALGO_TEST(test_msg0, 384, edonr_384_test_digests[0]);
EDONR_ALGO_TEST(test_msg2, 384, edonr_384_test_digests[2]);
EDONR_ALGO_TEST(test_msg0, 512, edonr_512_test_digests[0]);
EDONR_ALGO_TEST(test_msg2, 512, edonr_512_test_digests[2]);
EDONR_ALGO_TEST(test_msg1, 512, edonr_512_test_digests[2]);
if (failed)
return (1);
(void) printf("Running performance tests (hashing 1024 MiB of "
"data):\n");
EDONR_PERF_TEST(256);
EDONR_PERF_TEST(512);
return (0);