to use the "year1-year3" format, as opposed to "year1, year2, year3".
This seems to make lawyers more happy, but also prevents the
lines from getting excessively long as the years start to add up.
Suggested by: imp
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
wait, rather than the socket label. This avoids reaching up to
the socket layer during connection close, which requires locking
changes. To do this, introduce MAC Framework entry point
mac_create_mbuf_from_inpcb(), which is called from tcp_twrespond()
instead of calling mac_create_mbuf_from_socket() or
mac_create_mbuf_netlayer(). Introduce MAC Policy entry point
mpo_create_mbuf_from_inpcb(), and implementations for various
policies, which generally just copy label data from the inpcb to
the mbuf. Assert the inpcb lock in the entry point since we
require consistency for the inpcb label reference.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
and the mpo_create_cred() MAC policy entry point to
mpo_copy_cred_label(). This is more consistent with similar entry
points for creation and label copying, as mac_create_cred() was
called from crdup() as opposed to during process creation. For
a number of policies, this removes the requirement for special
handling when copying credential labels, and improves consistency.
Approved by: re (scottl)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
system calls, and prefer these calls over getsockopt()/setsockopt()
for ABI reasons. When addressing UNIX domain sockets, these calls
retrieve and modify the socket label, not the label of the
rendezvous vnode.
- Create mac_copy_socket_label() entry point based on
mac_copy_pipe_label() entry point, intended to copy the socket
label into temporary storage that doesn't require a socket lock
to be held (currently Giant).
- Implement mac_copy_socket_label() for various policies.
- Expose socket label allocation, free, internalize, externalize
entry points as non-static from mac_net.c.
- Use mac_socket_label_set() in __mac_set_fd().
MAC-aware applications may now use mac_get_fd(), mac_set_fd(), and
mac_get_peer() to retrieve and set various socket labels without
directly invoking the getsockopt() interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
extra argument to the devfs MAC policy entry points was accidentally
merged from the MAC branch during my earlier commit to these policies,
and is not scheduled to be merged just yet.
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
mac_mls_subject_equal_ok() to mac_mls_subject_privileged(),
which more consistently reflects the fact that this is really
about our notion of privilege in the MLS policy.
Since we don't use suser() for privilege in MLS, remove
the suser check from the ifnet relabel ioctl, and replace it
with an MLS privilege check.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
the MAC policy modules to improve robustness against C string
bugs and vulnerabilities. Following these revisions, all
string construction of labels for export to userspace (or
elsewhere) is performed using the sbuf API, which prevents
the consumer from having to perform laborious and intricate
pointer and buffer checks. This substantially simplifies
the externalization logic, both at the MAC Framework level,
and in individual policies; this becomes especially useful
when policies export more complex label data, such as with
compartments in Biba and MLS.
Bundled in here are some other minor fixes associated with
externalization: including avoiding malloc while holding the
process mutex in mac_lomac, and hence avoid a failure mode
when printing labels during a downgrade operation due to
the removal of the M_NOWAIT case.
This has been running in the MAC development tree for about
three weeks without problems.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
mpo_copy_mbuf_label() entry point for Biba and MLS, respectively.
Otherwise, labels in m_tags may not be properly propagated across
some classes of mbuf operations. This problem caused these policies
to fail-stop the system with a panic.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
of C strings internally; C strings require a lot of return value
checking that (a) takes a lot of space, and (b) is difficult to get
right. Prior to the advent of compartment support, modeling APIs
for helper functions on snprintf worked fine; with the additional
complexity, the sbuf_printf() API makes a lot more sense.
While doing this, break out the printing of sequential compartment
lists into a helper function, mac_{biba,mls}_compartment_to_string().
This permits the main body of mac_{biba,mls}_element_to_string()
to be concerned only with identifying sequential ranges rather
than rendering.
At a less disruptive moment, we'll push the move from snprintf()-like
interface to sbuf()-like interface up into the MAC Framework layer.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
mismerged from the MAC tree, and didn't get picked up because warnings
are not normally fatal in per-module builds, only when they are linked
into a kernel (such as LINT).
Reported by: des and the technicolor tinderbox
Approved by: re (scottl)
the vendor is only included in the long name currently, reducing
verbosity when modules are registered and unregistered.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
additional flags argument to indicate blocking disposition, and
pass in M_NOWAIT from the IP reassembly code to indicate that
blocking is not OK when labeling a new IP fragment reassembly
queue. This should eliminate some of the WITNESS warnings that
have started popping up since fine-grained IP stack locking
started going in; if memory allocation fails, the creation of
the fragment queue will be aborted.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
for enforcement:
mac_mls_check_system_swapon() - Require that the subject and the
swapfile target vnode labels dominate one another. An additional
check is probably needed here to require that the swapfile target
has a label of mls/high to prevent information leakage through
swapfiles.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
and MLS policies: as we support both an effective (single) element and
range (available) elements, require that the single be in the range if
both the single and range are defined in the update. Remove comments
suggesting that such a check might be a good idea.
Don't introduce a similar check for network interfaces; due to different
interpretations of the single and range elements, it's not clear that
it's useful to do so.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
labeling for Biba.
Rename the variable 'level' to 'type' in interface parsing and
labeling for MLS.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
kernel, you should expect them to do something, so now they do. This
doesn't affect users who don't load or explicitly compile in the
policies.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
unused. Replace it with a dm_mount back-pointer to the struct mount
that the devfs_mount is associated with. Export that pointer to MAC
Framework entry points, where all current policies don't use the
pointer. This permits the SEBSD port of SELinux's FLASK/TE to compile
out-of-the-box on 5.0-CURRENT with full file system labeling support.
Approved by: re (murray)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
we brought in the new cache and locking model for vnode labels. We
now rely on mac_associate_devfs_vnode().
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
function takes an int * parameter, not a size_t * parameter.
Arguably, it should rather take a size_t *, but that would
require changing the uio_resid field of struct uio to be a size_t
instead of an int, which I don't want to do that close to
5.0-RELEASE.
Reviewed by: rwatson
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
MAC access() and open() checks, the argument actually has an int type
where it becomes available. Switch to using 'int' for the mode argument
throughout the MAC Framework and policy modules.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
with the new VFS/EA semantics in the MAC framework. Move the per-policy
structures out to per-policy include files, removing all policy-specific
defines and structures out of the base framework includes and
implementation, making mac_biba and mac_mls entirely self-contained.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
to parse their own label elements (some cleanup to occur here in the
future to use the newly added kernel strsep()). Policies now
entirely encapsulate their notion of label in the policy module.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
copy elements of one Biba or MLS label to another based on the flags
on the source label element. Use this instead of
mac_{biba,mls}_{single,range}() to simplify the existing code, as
well as support partial label updates (we don't update if none is
requested).
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
policies remains the same: subjects and objects are labeled for
integrity or sensitivity, and a dominance operator determines whether
or not subject/object accesses are permitted to limit inappropriate
information flow. Compartments are a non-hierarchal component to
the label, so add a bitfield to the label element for each, and a
set check as part of the dominance operator. This permits the
implementation of "need to know" elements of MLS.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
range on them, leaving process credentials as the only kernel
objects with label ranges in the Biba and MLS policies. We
weren't using the range in any access control decisions, so this
lets us garbage collect effectively unused code.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
collapse the two cases more cleanly: rather than wrapping an access
check around open, simply provide the open implementation for the
access vector entry. No functional change.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
we just break out some of the tests better. Minor change in that
we now better support incremental update of labels.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
instead of the default biba/high, mls/low, making it easier to use
ptys with these policies. This isn't the final solution, but does
help.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
seperate entry points for each occasion:
mac_check_vnode_mmap() Check at initial mapping
mac_check_vnode_mprotect() Check at mapping protection change
mac_check_vnode_mmap_downgrade() Determine if a mapping downgrade
should take place following
subject relabel.
Implement mmap() and mprotect() entry points for labeled vnode
policies. These entry points are currently not hooked up to the
VM system in the base tree. These changes improve the consistency
of the access control interface and offer more flexibility regarding
limiting access to vnode mmaping.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories