features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.
The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.
The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.
The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.
Currently only Intel and AMD cpus are supported and were tested.
Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
dump or minidump). When the script is run, it generates a text file
containing the output of several commands run againt the core dump such
as kgdb (stack trace), ps, netstat, vmstat, iostat, dmesg, and fstat.
Obtained from: Yahoo!
MFC after: 2 weeks
parts relied on the now removed NET_NEEDS_GIANT.
Most of I4B has been disconnected from the build
since July 2007 in HEAD/RELENG_7.
This is what was removed:
- configuration in /etc/isdn
- examples
- man pages
- kernel configuration
- sys/i4b (drivers, layers, include files)
- user space tools
- i4b support from ppp
- further documentation
Discussed with: rwatson, re
NET_NEEDS_GIANT. netatm has been disconnected from the build for ten
months in HEAD/RELENG_7. Specifics:
- netatm include files
- netatm command line management tools
- libatm
- ATM parts in rescue and sysinstall
- sample configuration files and documents
- kernel support as a module or in NOTES
- netgraph wrapper nodes for netatm
- ctags data for netatm.
- netatm-specific device drivers.
MFC after: 3 weeks
Reviewed by: bz
Discussed with: bms, bz, harti
user-mode lock manager, build a kernel with the NFSLOCKD option and
add '-k' to 'rpc_lockd_flags' in rc.conf.
Highlights include:
* Thread-safe kernel RPC client - many threads can use the same RPC
client handle safely with replies being de-multiplexed at the socket
upcall (typically driven directly by the NIC interrupt) and handed
off to whichever thread matches the reply. For UDP sockets, many RPC
clients can share the same socket. This allows the use of a single
privileged UDP port number to talk to an arbitrary number of remote
hosts.
* Single-threaded kernel RPC server. Adding support for multi-threaded
server would be relatively straightforward and would follow
approximately the Solaris KPI. A single thread should be sufficient
for the NLM since it should rarely block in normal operation.
* Kernel mode NLM server supporting cancel requests and granted
callbacks. I've tested the NLM server reasonably extensively - it
passes both my own tests and the NFS Connectathon locking tests
running on Solaris, Mac OS X and Ubuntu Linux.
* Userland NLM client supported. While the NLM server doesn't have
support for the local NFS client's locking needs, it does have to
field async replies and granted callbacks from remote NLMs that the
local client has contacted. We relay these replies to the userland
rpc.lockd over a local domain RPC socket.
* Robust deadlock detection for the local lock manager. In particular
it will detect deadlocks caused by a lock request that covers more
than one blocking request. As required by the NLM protocol, all
deadlock detection happens synchronously - a user is guaranteed that
if a lock request isn't rejected immediately, the lock will
eventually be granted. The old system allowed for a 'deferred
deadlock' condition where a blocked lock request could wake up and
find that some other deadlock-causing lock owner had beaten them to
the lock.
* Since both local and remote locks are managed by the same kernel
locking code, local and remote processes can safely use file locks
for mutual exclusion. Local processes have no fairness advantage
compared to remote processes when contending to lock a region that
has just been unlocked - the local lock manager enforces a strict
first-come first-served model for both local and remote lockers.
Sponsored by: Isilon Systems
PR: 95247 107555 115524 116679
MFC after: 2 weeks
This commit includes the following core components:
* sample configuration file for sensorsd
* rc(8) script and glue code for sensorsd(8)
* sysctl(3) doc fixes for CTL_HW tree
* sysctl(3) documentation for hardware sensors
* sysctl(8) documentation for hardware sensors
* support for the sensor structure for sysctl(8)
* rc.conf(5) documentation for starting sensorsd(8)
* sensor_attach(9) et al documentation
* /sys/kern/kern_sensors.c
o sensor_attach(9) API for drivers to register ksensors
o sensor_task_register(9) API for the update task
o sysctl(3) glue code
o hw.sensors shadow tree for sysctl(8) internal magic
* <sys/sensors.h>
* HW_SENSORS definition for <sys/sysctl.h>
* sensors display for systat(1), including documentation
* sensorsd(8) and all applicable documentation
The userland part of the framework is entirely source-code
compatible with OpenBSD 4.1, 4.2 and -current as of today.
All sensor readings can be viewed with `sysctl hw.sensors`,
monitored in semi-realtime with `systat -sensors` and also
logged with `sensorsd`.
Submitted by: Constantine A. Murenin <cnst@FreeBSD.org>
Sponsored by: Google Summer of Code 2007 (GSoC2007/cnst-sensors)
Mentored by: syrinx
Tested by: many
OKed by: kensmith
Obtained from: OpenBSD (parts)
the threading libraries is built. This simplifies the
logic in makefiles that need to check if the pthreads
support is present. It also fixes a bug where we would
build a threading library that we shouldn't have built:
for example, building with WITHOUT_LIBTHR and the default
value of DEFAULT_THREADING_LIB (libthr) would mistakenly
build the libthr library, but not install it.
Approved by: re (kensmith)
This tool allows fine grained enabling of the debugging output in net80211 and
its useful to have it available to everyone to diagnose wifi issues.
Approved by: re (rwatson)
NET_NEEDS_GIANT, which will shortly be removed. This is done in a
away that it may be easily reattached to the build before 7.1 if
appropriate locking is added. Specifics:
- Don't install netatm include files
- Disconnect netatm command line management tools
- Don't build libatm
- Don't include ATM parts in rescue or sysinstall
- Don't install sample configuration files and documents
- Don't build kernel support as a module or in NOTES
- Don't build netgraph wrapper nodes for netatm
This removes the last remaining consumer of NET_NEEDS_GIANT.
Reviewed by: harti
Discussed with: bz, bms
Approved by: re (kensmith)
PowerPC-based Apple's machines and small utility to do it from
userland modelled after the similar utility in Darwin/OSX.
Only tested on 1.25GHz G4 Mac Mini.
MFC after: 1 month
- <netipx> headers [1]
- IPX library (libipx)
- IPX support in ifconfig(8)
- IPXrouted(8)
- new MK_NCP option
New MK_NCP build option controls:
- <netncp> and <fs/nwfs> headers
- NCP library (libncp)
- ncplist(1) and ncplogin(1)
- mount_nwfs(8)
- ncp and nwfs kernel modules
User knobs: WITHOUT_IPX, WITHOUT_IPX_SUPPORT, WITHOUT_NCP.
[1] <netsmb/netbios.h> unconditionally uses <netipx> headers
so they are still installed. This needs to be dealt with.