Adding make_dev() and destroy_dev() calls in (hopefully) the right
places.
This is done by calling make_dev() in each object constructor and
caching the dev_t's returned from make_dev() in each struct
'subdisk'(sd), 'plex' and 'volume' such that the 'object'_free()
functioncs can call destroy dev.
This change makes a subset of the old /dev/vinum appear under devfs.
Enough nodes appear such that I'm able to mount my striped volume.
There may be more work needed to get vinum configuration working
properly.
that was introduced in revision 1.80. The problem manifested
itself with a `locking against myself' panic and could also
result in soft updates inconsistences associated with inodedeps.
The two problems are:
1) One of the background operations could manipulate the bitmap
while holding it locked with intent to create. This held lock
results in a `locking against myself' panic, when the background
processing that we have been coopted to do tries to lock the bitmap
which we are already holding locked. To understand how to fix this
problem, first, observe that we can do the background cleanups in
inodedep_lookup only when allocating inodedeps (DEPALLOC is set in
the call to inodedep_lookup). Second observe that calls to
inodedep_lookup with DEPALLOC set can only happen from the following
calls into the softdep code:
softdep_setup_inomapdep
softdep_setup_allocdirect
softdep_setup_remove
softdep_setup_freeblocks
softdep_setup_directory_change
softdep_setup_directory_add
softdep_change_linkcnt
Only the first two of these can come from ffs_alloc.c while holding
a bitmap locked. Thus, inodedep_lookup must not go off to do
request_cleanups when being called from these functions. This change
adds a flag, NODELAY, that can be passed to inodedep_lookup to let
it know that it should not do background processing in those cases.
2) The return value from request_cleanup when helping out with the
cleanup was 0 instead of 1. This meant that despite the fact that
we may have slept while doing the cleanups, the code did not recheck
for the appearance of an inodedep (e.g., goto top in inodedep_lookup).
This lead to the softdep inconsistency in which we ended up with
two inodedep's for the same inode.
Reviewed by: Peter Wemm <peter@yahoo-inc.com>,
Matt Dillon <dillon@earth.backplane.com>
filename insteada of copying the first 32 characters of it.
- Add in const modifiers for the passed in format strings and filenames
and their respective members in the ktr_entry struct.
scheduling an interrupt thread to run when needed. This has the side
effect of enabling support for entropy gathering from interrupts on
all architectures.
- Change the software interrupt and x86 and alpha hardware interrupt code
to use ithread_schedule() for most of their processing when scheduling
an interrupt to run.
- Remove the pesky Warning message about interrupt threads having entropy
enabled. I'm not sure why I put that in there in the first place.
- Add more error checking for parameters and change some cases that
returned EINVAL to panic on failure instead via KASSERT().
- Instead of doing a documented evil hack of setting the P_NOLOAD flag
on every interrupt thread whose pri was SWI_CLOCK, set the flag
explicity for clk_ithd's proc during start_softintr().
- Add pager capability to the 'show ktr' command. It functions much like
'ps': Enter at the prompt displays one more entry, Space displays
another page, and any other key quits.
This is useful when doing copies of packet where some leading
space has been preallocated to insert protocol headers.
Note that there are in fact almost no users of m_copypacket.
MFC candidate.
in mi_switch() just before calling cpu_switch() so that the first switch
after a resched request will satisfy the request.
- While I'm at it, move a few things into mi_switch() and out of
cpu_switch(), specifically set the p_oncpu and p_lastcpu members of
proc in mi_switch(), and handle the sched_lock state change across a
context switch in mi_switch().
- Since cpu_switch() no longer handles the sched_lock state change, we
have to setup an initial state for sched_lock in fork_exit() before we
release it.
Please note:
When committing changes to this file, it is important to note that
linux is not freebsd -- their system call numbers (and sometimes names)
are different on different platforms. When in doubt (and you always need
to be) check the arch-specific unistd.h and entry.S files in the linux
kernel sources to see what the syscall numbers really are.
is sent to a process, psignal() needs to schedule an AST for the
process if the process is runnable, not just if it is current, so that
pending signals get checked for on the next return of the process to
user mode. This wasn't practical until recently because the AST flag
was per-cpu so setting it for a non-current process would usually just
cause a bogus AST for the current process.
For non-current processes looping in user mode, it took accidental
(?) magic to deliver signals at all. Signals were usually delivered
late as a side effect of rescheduling (need_resched() sets astpending,
etc.). In pre-SMPng, delivery was delayed by at most 1 quantum (the
need_resched() call in roundrobin() is certain to occur within 1
quantum for looping processes). In -current, things are complicated
by normal interrupt handlers being threads. Missing handling of the
complications makes roundrobin() a bogus no-op, but preemptive
scheduling sort of works anyway due to even larger bogons elsewhere.
always on curproc. This is needed to implement signal delivery properly
(see a future log message for kern_sig.c).
Debogotified the definition of aston(). aston() was defined in terms
of signotify() (perhaps because only the latter already operated on
a specified process), but aston() is the primitive.
Similar changes are needed in the ia64 versions of cpu.h and trap.c.
I didn't make them because the ia64 is missing the prerequisite changes
to make astpending and need_resched per-process and those changes are
too large to make without testing.
tsc_present in the right places (together with other variables of the
same linkage), and don't use messy ifdefs just to avoid exporting it in
some cases.
actually in the kernel. This structure is a different size than
what is currently in -CURRENT, but should hopefully be the last time
any application breakage is caused there. As soon as any major
inconveniences are removed, the definition of the in-kernel struct
ucred should be conditionalized upon defined(_KERNEL).
This also changes struct export_args to remove dependency on the
constantly-changing struct ucred, as well as limiting the bounds
of the size fields to the correct size. This means: a) mountd and
friends won't break all the time, b) mountd and friends won't crash
the kernel all the time if they don't know what they're doing wrt
actual struct export_args layout.
Reviewed by: bde
Add new PRC_UNREACH_ADMIN_PROHIB in sys/sys/protosw.h
Remove condition on TCP in src/sys/netinet/ip_icmp.c:icmp_input
In src/sys/netinet/ip_icmp.c:icmp_input set code = PRC_UNREACH_ADMIN_PROHIB
or PRC_UNREACH_HOST for all unreachables except ICMP_UNREACH_NEEDFRAG
Rename sysctl icmp_admin_prohib_like_rst to icmp_unreach_like_rst
to reflect the fact that we also react on ICMP unreachables that
are not administrative prohibited. Also update the comments to
reflect this.
In sys/netinet/tcp_subr.c:tcp_ctlinput add code to treat
PRC_UNREACH_ADMIN_PROHIB and PRC_UNREACH_HOST different.
PR: 23986
Submitted by: Jesper Skriver <jesper@skriver.dk>
case there is nothing to do. This happens normally when the card shares
the interrupt line with other devices.
This code saves a couple of microseconds per interrupt even on a
fast CPU. You normally would not care, except under heavy tinygram
traffic where you can have some 50-100.000 interrupts per second...
On passing, correct a spelling error.
lookup vop so that it defaulted to using vop_eopnotsupp for strange
lookups like the ones for open("/dev/null/", ...) and stat("/dev/null/",
...). This mainly caused the wrong errno to be returned by vfs syscalls
(EOPNOTSUPP is not in POSIX, and is not documented in connection with
specfs in open.2 and is not documented in stat.2 at all). Also, lookup
vops are apparently required to set *ap->a_vpp to NULL on error, but
vop_eopnotsupp is too broken to do this.
register our sub-busses in the reversed order. In the future, we may provide
a hint to CAM on how to order the scans for multi-function adapters that also
set this flag, but trying to do it the "twin channel" way will lead to
a panic.
allocation, as required.
If m_getm() receives NULL as a first argument, then it allocates `len'
(second argument) bytes worth of mbufs + clusters and returns the chain
only if it was able to allocate everything.
If the first argument is non-NULL, then it should be an existing mbuf
chain (e.g. pre-allocated mbuf sitting on a ring, on some list, etc.) and
so it will allocate `len' bytes worth of clusters and mbufs, as needed,
and append them to the tail of the passed in chain, only if it was able
to allocate everything requested.
If allocation fails, only what was allocated by the routine will be freed,
and NULL will be returned.
Also, get rid of existing m_getm() in netncp code and replace calls to it
to calls to this new generic code.
Heavily Reviewed by: bp
clear MCPCIA_INT_MASK0 helps things substantially. So, why not indeed?
Rearrange irq and cookie calculation to use shifts/masks instead
of division. Fix things to correctly remember the intpin for that
one in a million non-INTA PCI device.
made no sense in the context of wrapping them within the _SYBRIDGE macro-
or anything like it- so we concluded that this must have been a typo
in the docs. This also doesn't use the same bridge offset as anything
else.
Add some defines for the INT_CTL register.
address is configured on a interface. This is useful for routers with
dynamic interfaces. It is now possible to say:
0100 allow tcp from any to any established
0200 skipto 1000 tcp from any to any
0300 allow ip from any to any
1000 allow tcp from 1.2.3.4 to me 22
1010 deny tcp from any to me 22
1020 allow tcp from any to any
and not have to worry about the behaviour if dynamic interfaces configure
new IP numbers later on.
The check is semi expensive (traverses the interface address list)
so it should be protected as in the above example if high performance
is a requirement.
run-time. This is temporary solution until proper kernel Unicode interfaces
are in place and as such was purposely designed to be as tiny as possible
(3 lines of the code not counting comments). The port with conversion routines
for the most popular single-byte languages will be added later today
Reviewed by: bp, "Michael C . Wu" <keichii@iteration.net>
Approved by: bp
one the number of variables needed for top and other setgid kmem
utilities that could only be accessed via /dev/kmem previously.
Submitted by: Thomas Moestl <tmoestl@gmx.net>
Reviewed by: freebsd-audit
- All processes go into the same array of queues, with different
scheduling classes using different portions of the array. This
allows user processes to have their priorities propogated up into
interrupt thread range if need be.
- I chose 64 run queues as an arbitrary number that is greater than
32. We used to have 4 separate arrays of 32 queues each, so this
may not be optimal. The new run queue code was written with this
in mind; changing the number of run queues only requires changing
constants in runq.h and adjusting the priority levels.
- The new run queue code takes the run queue as a parameter. This
is intended to be used to create per-cpu run queues. Implement
wrappers for compatibility with the old interface which pass in
the global run queue structure.
- Group the priority level, user priority, native priority (before
propogation) and the scheduling class into a struct priority.
- Change any hard coded priority levels that I found to use
symbolic constants (TTIPRI and TTOPRI).
- Remove the curpriority global variable and use that of curproc.
This was used to detect when a process' priority had lowered and
it should yield. We now effectively yield on every interrupt.
- Activate propogate_priority(). It should now have the desired
effect without needing to also propogate the scheduling class.
- Temporarily comment out the call to vm_page_zero_idle() in the
idle loop. It interfered with propogate_priority() because
the idle process needed to do a non-blocking acquire of Giant
and then other processes would try to propogate their priority
onto it. The idle process should not do anything except idle.
vm_page_zero_idle() will return in the form of an idle priority
kernel thread which is woken up at apprioriate times by the vm
system.
- Update struct kinfo_proc to the new priority interface. Deliberately
change its size by adjusting the spare fields. It remained the same
size, but the layout has changed, so userland processes that use it
would parse the data incorrectly. The size constraint should really
be changed to an arbitrary version number. Also add a debug.sizeof
sysctl node for struct kinfo_proc.
not be retried. It is an indication that there was an error that was
corrected during the execution of the command. This is per ANSI SCSI2
spec.
It's possible that these should also be noted to the console (as indicative,
perhaps, of growing media defect lists in drives), but the default of
printing errors out if bootverbose in this case is probably enough.
Also, there'd been a missing ERESTART for that clause anyway.
2. If you have an ABORTED COMMAND, it's almost invariably a SCSI parity
error. You should never be silent about these since users should do something
about this if it occurs (moving that power cord *away* from the SCSI cable is
always a good first start). This should print irrespective of bootverbose
because it's an actual real error even if we retry a transmission.
Reviewed by: audit@freebsd.org, gibbs@freebsd.org
- Missing cpu_to_scr() added (endian-ness).
Improvement (fix|workaroung??):
- Blindly firing a PPR can lead to some messy situations due to
various causes or misfeatures, for example:
* The 53C1010-[33|66] supports offset 62 in DT mode, but only
offset 31 in ST mode. As a result, a PPR(DT, offset 62)
responded with PPR(ST, any offset > 31) must be rejected.
* A device that doesn't know about PPR should reject it, but
may also be confused by this message.
When a PPR encounters problems, the driver now patches the goal
transfer settings for legacy negotiations to be performed later
with the offending target. This give a chance for bad situations
to be fixed automagically.
Some things needed bits of <i386/include/lock.h> - cy.c now has its
own (only) copy of the COM_(UN)LOCK() macros, and IMASK_(UN)LOCK()
has been moved to <i386/include/apic.h> (AKA <machine/apic.h>).
Reviewed by: jhb
were performed to determine if the received packet should be reset. This
created erroneous ratelimiting and false alarms in some cases. The code
has now been reorganized so that the checks for validity come before
the call to badport_bandlim. Additionally, a few changes in the symbolic
names of the bandlim types have been made, as well as a clarification of
exactly which type each RST case falls under.
Submitted by: Mike Silbersack <silby@silby.com>
and function argument declarations. Make sure that functions that are
supposed to return a pointer return NULL in case of failure. Don't cast
NULL. Finally, get rid of annoying `register' uses.
isp_iid_set/isp_iid for fibre channel- this is because we now
fake a port database entry for ourselves. Add the additional loop
states between LOOP_PDB_RCVD and LOOP_READY.
Change and comment on a wad of Fibre Channel isp_control functions.
Change and comment on some of the ISPASYNC Fibre Channel events.
the unit number doesn't get reused.
Make sure that if we've compiled for ISP_TARGET_MODE we set the
default role to be ISP_ROLE_INITIATOR|ISP_ROLE_TARGET.
Do some misc other cleanups.
and depending on role, make sure link is up, scan the fabric (if we're
connected to a fabric), scan the local loop (if appropriate), merge
the results into the local port database then, check once again
to make sure we have f/w at FW_READY state and the the loopstate
is LOOP_READY.
Comment out usage of ISP_SMPLOCK- I have my doubts that this works sanely
as yet because CAM itself still needs Giant. I *was* dropping my lock
and grabbing Giant when doing the upcall for completion, but this is all
seems ridiculous until CAM is fixed.
if we're ISP_ROLE_NONE. Change ISPASYNC_LOGGED_INOUT to ISPASYNC_PROMENADE.
Make sure we note if something is a fabric device.
Target mode:
Finally fix (to a first approximation) SCSI Target Mode again- we needed
to correctly check against CAM_TARGET_WILDCARD and CAM_LUN_WILDCARD
so that targbh won't confuse us. Comment out the drainqueue stuff for
now. Use isp_fc_runstate instead if isp_control/ISPCTL_FCLINK_TEST.
Remove ISP2100_FABRIC defines- we always handle fabric now. Insert
isp_getmap helper function (for getting Loop Position map). Make
sure we (for our own benefit) mark req_state_flags with RQSF_GOT_SENSE
for Fibre Channel if we got sense data- the !*$)!*$)~*$)*$ Qlogic
f/w doesn't do so. Add ISPCTL_SCAN_FABRIC, ISPCTL_SCAN_LOOP, ISPCTL_SEND_LIP,
and ISPCTL_GET_POSMAP isp_control functions. Correctly send async notifications
upstream for changes in the name server, changes in the port database, and
f/w crashes. Correctly set topology when we get a ASYNC_PTPMODE event.
Major stuff:
Quite massively redo how we handle Loop events- we've now added several
intermediate states between LOOP_PDB_RCVD and LOOP_READY. This allows us
a lot finer control about how we scan fabric, whether we go further
than scanning fabric, how we look at the local loop, and whether we
merge entries at the level or not. This is the next to last step for
moving managing loop state out of the core module entirely (whereupon
loop && fabric events will simply freeze the command queue and a thread
will run to figure out what's changed and *it* will re-enable the queu).
This fine amount of control also gets us closer to having an external
policy engine decide which fabric devices we really want to log into.
tracing in order to avoid duplication.
- Insert some tracepoints back into the mutex acq/rel code, thus ensuring
that we can trace all lock acq/rel's again.
- All CURPROC != NULL checks are MPASS()es (under MUTEX_DEBUG) because they
signify a serious mutex corruption.
- Change up some KASSERT()s to MPASS()es, and vice-versa, depending on the
type of problem we're debugging (INVARIANTS is used here to check that
the API is being used properly whereas MUTEX_DEBUG is used to ensure that
something general isn't happening that will have bad impact on mutex
locks).
Reminded by: jhb, jake, asmodai
genassym here, but what I've also noticed is that we're dorking
with a mutex directly at assembler level- I'm not sure that this
is wise at this stage in the SMP port- I think it's going to be much
safer for a while to do things in C until SMP wunderkind figure out
what works and slow down this 3 order differential...
Style nits.
Make sure that our selection hardware is disabled
as soon as possible after detecting a busfree and
even go so far as to disable the selection hardware
in advance of an event that will cause a busfree
(ABORT or BUS DEVICE RESET message). The concern
is that the selection hardware will select a target
for which, after processing the bus free, there
will be no commands pending. The sequencer idle
loop will re-enable the selection should it still be
necessary.
In ahc_handle_scsiint(), clear SSTAT0 events several
PCI transactions (most notably reads) prior to clearing
SCSIINT. The newer chips seem to take a bit of time to
see the change which can make the clearing of SCSIINT
ineffective.
Don't bother panicing at the end of ahc_handle_scsiint().
Getting to the final else just means we lost the race
with clearing SCSIINT.
In ahc_free(), handle init-level 0. This can happen when we
fail the attach for RAID devices. While I'm here, also kill
the parent dma tag.
In ahc_match_scb(), consider initiator ccbs to be any
that are not from the target mode group. This fixes
a bug where an external target reset CCB was not getting
cleaned up by the reset code.
Don't bother freezing a ccb in any of our "abort" routines
when the status is set to CAM_REQ_CMP. This can happen
for a target reset ccb.
aic7xxx.reg:
Reserve space for a completion queue. This will be used
to enhance performance in the near future.
aic7xxx.seq:
Remove an optimization for the 7890 autoflush bug that
turned out to allow, in rare cases, some data to get
lost.
Implement a simpler, faster, fix for the PCI_2_1 retry
bug that hangs the sequencer on an SCB dma for certain chips.
Test against SAVED_SCSIID rather than SELID during target
reselections. This is how we always did it in the past,
but the code was modified while trying to work around an
issue with the 7895. SAVED_SCSIID takes into account
twin channel adapters such as the 2742T, whereas SELID
does not have the channel bit. This caused invalid
selection warnings and other strangeness on these cards.
aic7xxx_pci.c
Use the correct mask for checking the generic aic7892
entry.
it as I was playing with some other ways of doing kernel preemption.
You must still specify the PREEMPTION option in your config file to get a
preemptive kernel.
attributes. This is needed for AST's to be properly posted in a preemptive
kernel. They are backed by two new flags in p_sflag: PS_ASTPENDING and
PS_NEEDRESCHED. They are still accesssed by their old macros:
aston(), astoff(), etc. For completeness, an astpending() macro has been
added to check for a pending AST, and clear_resched() has been added to
clear need_resched().
- Rename syscall2() on the x86 back to syscall() to be consistent with
other architectures.
- I can't seem to reproduce the warning I got from WITNESS anymore.
- The fix was wrong. Since a uidinfo struct is a member of proc, it
makes sense for the locking order to be such that you are allowed to
hold proc and then grab the uidinfo lock.
- Use swi_* function names.
- Use void * to hold cookies to handlers instead of struct intrhand *.
- In sio.c, use 'driver_name' instead of "sio" as the name of the driver
lock to minimize diffs with cy(4).
- Add a set of MI helper functions for interrupt threads:
- ithread_create() creates a new interrupt thread
- ithread_destroy() destroys an interrupt thread
- ithread_add_handler() attaches a new handler to an interrupt thread
- ithread_remove_handler() detaches a handler from an interrupt thread
- Rename sinthand_add() and sched_swi() to swi_add() and swi_sched()
respectively so that they live in a consistent namespace.
- struct intrhand is no longer a public type. It would be private to
kern_intr.c but the current implementation of fast interrupts on the
alpha requires the type to be exported. However, all handlers should
be treated as void * cookies in the way that new-bus treats them. This
includes references to software interrupt handlers.
This mistake seems to have been benign until very recently, probably
until msmith's PCI code reshuffle which cleaned up a lot of things.
Still, my AIC7770 doesn't work again, but it at least probes the
EISA bus now.
will only display sleep mutexes held by the current process.
- Clean up some nits in the witness_display() function and add a ddb
command 'show witness' that dumps the hierarchy and order lists to the
console.
- Use queue(3) macros where appropriate.
- Resort the spin lock order list so that "com" is before "sched_lock".
Also, add appropriate #ifdef's around SMP and i386-specific mutexes.
- Add two new mutexes used to protect the ithread lists and tables to the
order list.
Requested by: bde (1)
follows:
- show ktr_first display the first entry
- show ktr_next display the next entry
- show ktr display the entire buffer
The /v modifiers continue to work as described previously.
Requested by: bde
only the boot processor should be running in the comments.
- Initialize curproc to point to each CPU's respective idleproc if their
curproc is NULL.
- Keep track of the number of context switches performed by idleproc.
of returning an error code to the caller, NFS server op routines
must themselves build an error reply and return 0 to the caller.
This is achieved by replacing the erroneous return statements with
code that jumps forward to the op function's reply code. We need
to be careful to ensure that the 'struct mount' pointer is NULL
though, so that the final vn_finished_write() call becomes a no-op.
Reviewed by: mckusick, dillon
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
chipset. The MAC address is stored in the APC CMOS RAM and we have to
commit trememdous evil in order to read it. The code to do this is only
activated on the i386 platform. Thanks to Cameron Grant for providing
access to a test box for me to tinker with.
This will fix the problem where the sis driver ends up with a station
address of 00:00:00:00:00:00 on boards that use the 630E chipset.
* a ">" is really ">=" ;
* do not try to fetch zero-sized blocks from the card;
* make sure that bpf gets the packets it wants even with
bridging active;
different hardware address, we should drop it (this should only
happen in promiscuous mode). Relocate the code for this check
from before ng_ether(4) processing to after ng_ether(4) processing.
Also fix a compiler warning.
PR: kern/24465
kmem_free() for now. Kmem_malloc() and kmem_free() now have appropriate
assertions in place, and these checks aren't feasible until more of the
networking code is locked down. Also, the extra assertions here should
already be caught by the WITNESS code as lock order violations should
mutex operations on Giant be reintroduced here later.
adv_free() as the ISA probe routine doesn't malloc() ccb_infos but does
call adv_free().
- Release the ISA-only overrun DMA tags, bufs, and maps if the probe fails.
Tested by: rwatson
the index of the pollfd array to the number of fd's currently open, not
the maximum number of fd's. ie: if you had 0,1,2 open, you could not
use pollfd slots higher than 20. The specs say we only have to support
OPEN_MAX [64] entries but we allow way more than that.
only covers about 3-4 lines.
- Don't lower the IPL while we are on the interrupt stack. Instead, save
the raised IPL and change the saved IPL in sched_lock to IPL_0 before
calling mi_switch(). When we are resumed, restore the saved IPL in
sched_lock to the saved raised IPL so that when we release sched_lock
we won't lower the IPL. Without this, we would get nested interrupts
that would overflow the kernel stack.
Tested by: mjacob
also try implement teh documented behaviour in socket nodes
so that when there is only one hook, an unaddressed write/send
will DTRT and send the data to that hook.
except for setting it. Also remove count from aha and replace it with
optional.
Also add commented out pccard lines for all the old card drivers.
They have to be commented out until they are converted because it
causes problems in NEWCARD.