Write FDT attachment for the Terasic MTL (multitouch LCD) driver.
Exploit the fact that FDT allows multiple memory ranges to be
assigned to a device, giving us a cleaner description than
device.hints does.
Portions of this changeset that remove mtl from BERI device.hints and
add to DTS will be merged separately.
Sponsored by: DARPA, AFRL
Add code so that the BERI boot process can ask the kernel linker for
DTB blobs that may have been left for it by the boot loader, as done
on PowerPC and ARM. This will require both a more mature boot
loader, and more mature boot loader argument passing mechanism,
than currently supported on BERI.
Sponsored by: DARPA, AFRL
Initialise Openfirmware/FDT code earlier in the FreeBSD/beri boot,
so that the results will be available for configuring the console
UART (eventually).
Suggested by: thompsa
Sponsored by: DARPA, AFRL
FDT headers can't be included if the kernel is compiled without
FDT support, due to dependence on generated kobj headers. BERI
supports both FDT and non-FDT kernels.
Spotted by: bz
Terasic DE-4 board. Allow LED configuration to be set using loader
tunables, not just from userspace, and preconfigure LED 8 as a kernel
heartbeat. For now, this is a Nexus-attached, BERI-only driver, but it
could be used with other hard and soft cores on Altera FPGAs as well, in
principle.
Sponsored by: DARPA, AFRL
used with Terasic's DE-4 and other similar FPGA boards. This display
is 800x480 and includes a capacitive touch screen, multi-touch
gesture recognition, etc. This device driver depends on a Cambridge-
provided IP core that allows the MTL device to be hooked up to the
Altera Avalon SoC bus, and also provides a VGA-like text frame buffer.
Although it is compiled as a single device driver, it actually
implements a number of different device nodes exporting various
aspects of this multi-function device to userspace:
- Simple memory-mapped driver for the MTL 24-bit pixel frame buffer.
- Simple memory-mapped driver for the MTL control register set.
- Simple memory-mapped driver for the MTL text frame buffer.
- syscons attachment for the MTL text frame buffer.
This driver attaches directly to Nexus as is common for SoC device
drivers, and for the time being is considered BERI-specific, although
in principle it might be used with other hard and soft cores on
Altera FPGAs.
Control registers, including touchscreen input, are simply memory
mapped; in the future it would be desirable to hook up a more
conventional device node that can stream events, support kqueue(2)/
poll(2)/select(2), etc.
This is the first use of syscons on MIPS, as far as I can tell, and
there are some loose ends, such as an inability to use the hardware
cursor. More fundamentally, it appears that syscons(4) assumes that
either a host is PC-like (i386, amd64) *or* it must be using a
graphical frame buffer. While the MTL supports a graphical frame
buffer, using the text frame buffer is preferable for console use.
Fixing this issue in syscons(4) requires non-trivial changes, as the
text frame buffer support assumes that direct memory access can be
done to the text frame buffer without using bus accessor methods,
which is not the case on MIPS. As a workaround for this, we instead
double-buffer and pretend to be a graphical frame buffer exposing
text accessor methods, leading to some quirks in syscons behaviour.
Sponsored by: DARPA, AFRL
which presents a UART-like interface over the Avalon bus that can be
addressed over JTAG. This IP core proves extremely useful, allowing us to
connect trivially to the FreeBSD console over JTAG for FPGA-embedded hard
and soft cores. As interrupts are optionally configured for this soft
core, we support both interrupt-driven and polled modes of operation,
which must be selected using device.hints. UART instances appear in /dev
as ttyu0, ttyu1, etc.
However, it also contains a number of quirks, which make it difficult to
tell when JTAG is connected, and some buffering issues. We work around
these as best we can, using various heuristics.
While the majority of this device driver is not only not BERI-specific,
but also not MIPS-specific, for now add its defines in the BERI files
list, as the console-level parts are aware of where the first JTAG UART
is mapped on Avalon, and contain MIPS-specific address translation, to
use before Newbus and device.hints are available.
Sponsored by: DARPA, AFRL
Bluespec Extensible RISC Implementation (BERI) processor. BERI is a 64-bit
MIPS ISA soft CPU core that can be synthesised to Altera and Xilinx FPGAs,
and is being used for CPU and OS research at several institutions.
Sponsored by: DARPA, AFRL