by SCHED_PRI_TICKS should be SCHED_PRI_RANGE - 1 so that the resulting
priority value (before nice adjustment) is between SCHED_PRI_MIN and
SCHED_PRI_MAX, inclusive.
Submitted by: kib
Reported by: pho
MFC after: 1 week
In its stead use the Solaris / illumos approach of emulating '-' (dash)
in probe names with '__' (two consecutive underscores).
Reviewed by: markj
MFC after: 3 weeks
option, unbreak the lock tracing release semantic by embedding
calls to LOCKSTAT_PROFILE_RELEASE_LOCK() direclty in the inlined
version of the releasing functions for mutex, rwlock and sxlock.
Failing to do so skips the lockstat_probe_func invokation for
unlocking.
- As part of the LOCKSTAT support is inlined in mutex operation, for
kernel compiled without lock debugging options, potentially every
consumer must be compiled including opt_kdtrace.h.
Fix this by moving KDTRACE_HOOKS into opt_global.h and remove the
dependency by opt_kdtrace.h for all files, as now only KDTRACE_FRAMES
is linked there and it is only used as a compile-time stub [0].
[0] immediately shows some new bug as DTRACE-derived support for debug
in sfxge is broken and it was never really tested. As it was not
including correctly opt_kdtrace.h before it was never enabled so it
was kept broken for a while. Fix this by using a protection stub,
leaving sfxge driver authors the responsibility for fixing it
appropriately [1].
Sponsored by: EMC / Isilon storage division
Discussed with: rstone
[0] Reported by: rstone
[1] Discussed with: philip
ffsl() implementation, when it is available, instead of homegrown iteration.
On dual-E5645 amd64 system (2x6x2 cores) under heavy I/O load that reduces
time spent inside cpu_search() from 19% to 13%, while IOPS increased by 5%.
is starting. This is in line with practice in OpenSolaris.
Note that this change is only in ULE and not in the 4BSD scheduler.
Once this change settles in (MFC timeout has expired) we'll try it out
on 4BSD as well.
PR: 177706
Submitted by: Tiwei Bie
MFC after: 1 month
- Do not try to steal load from other CPUs if there was no contest switches
on this CPU (i.e. it was idle all the time and woke up just for bus mastering
or TLB shutdown). If current CPU was idle, then it is quite unlikely that some
other CPU has load to steal. Under high I/O rate, when TLB shutdowns cause
numerous CPU wakeups, on 24-CPU system load stealing code may consume up to
25% of all CPU time without giving any benefits.
- Change code that implements spinning for load to restart spin in case of
context switch. Previous code periodically called cpu_idle() even under
high interrupt/context switch rate.
- Rise spinning threshold to 10KHz, where it gives at least some effect
that may worth consumed power.
Reviewed by: jeff@
to further reduce latency for threads in this queue. This should help
as threads transition from realtime to timeshare. The latency is
bound to a max of sched_slice until we have more than sched_slice / 6
threads runnable. Then the min slice is allotted to all threads and
latency becomes (nthreads - 1) * min_slice.
Discussed with: mav
cache line in order to avoid manual frobbing but using
struct mtx_padalign.
The sole exception being nvme and sxfge drivers, where the author
redefined CACHE_LINE_SIZE manually, so they need to be analyzed and
dealt with separately.
Reviwed by: jimharris, alc
This enables CPU searches (which read tdq_load) to operate independently
of any contention on the spinlock. Some scheduler-intensive workloads
running on an 8C single-socket SNB Xeon show considerable improvement with
this change (2-3% perf improvement, 5-6% decrease in CPU util).
Sponsored by: Intel
Reviewed by: jeff
8 or more cores to improve utilization. None of my tests on 2xXeon (2x6x2)
system shown any slowdown from mentioned "excess thrashing". Same time in
pbzip2 test with number of threads more then number of CPUs I see up to 10%
speedup with SMT disabled and up 5% with SMT enabled. Thinking about
trashing I was trying to limit that stealing within same last level cache,
but got only worse results. Present code any way prefers to steal threads
from topologically closer cores.
Sponsored by: iXsystems, Inc.
- remove extra dynamic variable initializations;
- restore (4BSD) and implement (ULE) hogticks variable setting;
- make sched_rr_interval() more tolerant to options;
- restore (4BSD) and implement (ULE) kern.sched.quantum sysctl, a more
user-friendly wrapper for sched_slice;
- tune some sysctl descriptions;
- make some style fixes.
the wrong direction. Before it, if preemption and end of time slice happen
same time, thread was put to the head of the queue as for only preemption.
It could cause single thread to run for indefinitely long time. r220198
handles it by not clearing TDF_NEEDRESCHED in case of preemption. But that
causes delayed context switch every time preemption happens, even when not
needed.
Solve problem by introducing scheduler-specifoc thread flag TDF_SLICEEND,
set when thread's time slice is over and it should be put to the tail of
queue. Using SW_PREEMPT flag for that purpose as it was before just not
enough informative to work correctly.
On my tests this by 2-3 times reduces run time deviation (improves fairness)
in cases when several threads share one CPU.
Reviewed by: fabient
MFC after: 2 months
Sponsored by: iXsystems, Inc.
implementation specific vs. the common architecture definition.
Bring PPC4XX defines (PSL, SPR, TLB). Note the new definitions under
BOOKE_PPC4XX are not used in the code yet.
This change set is not supposed to affect existing E500 support, it's just
another reorg step before bringing support for E500mc, E5500 and PPC465.
Obtained from: AppliedMicro, Freescale, Semihalf
compatible with the sched provider implemented by Solaris and its open-
source derivatives. Full documentation of the sched provider can be found
on Oracle's DTrace wiki pages.
Note that for compatibility with scripts originally written for Solaris,
serveral probes are defined that will never fire. These probes are defined
to fire when Solaris-specific features perform certain actions. As these
features are not present in FreeBSD, the probes can never fire.
Also, I have added a two probes that are not defined in Solaris, lend-pri
and load-change. These probes have been added to make it possible to
collect schedgraph data with DTrace.
Finally, a few probes are defined in Solaris to take a cpuinfo_t *
argument. As it was not immediately clear to me how to translate that to
FreeBSD, currently those probes are passed NULL in place of a cpuinfo_t *.
Sponsored by: Sandvine Incorporated
MFC after: 2 weeks
with HZ rate through the sched_tick() calls from hardclock().
Potentially it can be used to improve precision, but now it is just minus
one more reason to call hardclock() for every HZ tick on every active CPU.
SCHED_4BSD never used sched_tick(), but keep it in place for now, as at
least SCHED_FBFS existing in patches out of the tree depends on it.
MFC after: 1 month
the cached name used for KTR_SCHED traces when a thread's name changes.
This way KTR_SCHED traces (and thus schedgraph) will notice when a thread's
name changes, most commonly via execve().
MFC after: 2 weeks
- In sched_pickcpu() be more careful taking previous CPU on SMT systems.
Do it only if all other logical CPUs of that physical one are idle to avoid
extra resource sharing.
- In sched_pickcpu() change general logic of CPU selection. First
look for idle CPU, sharing last level cache with previously used one,
skipping SMT CPU groups. If none found, search all CPUs for the least loaded
one, where the thread with its priority can run now. If none found, search
just for the least loaded CPU.
- Make cpu_search() compare lowest/highest CPU load when comparing CPU
groups with equal load. That allows to differentiate 1+1 and 2+0 loads.
- Make cpu_search() to prefer specified (previous) CPU or group if load
is equal. This improves cache affinity for more complicated topologies.
- Randomize CPU selection if above factors are equal. Previous code tend
to prefer CPUs with lower IDs, causing unneeded collisions.
- Rework periodic balancer in sched_balance_group(). With cpu_search()
more intelligent now, make balansing process flat, removing recursion
over the topology tree. That fixes double swap problem and makes load
distribution more even and predictable.
All together this gives 10-15% performance improvement in many tests on
CPUs with SMT, such as Core i7, for number of threads is less then number
of logical CPUs. In some tests it also gives positive effect to systems
without SMT.
Reviewed by: jeff
Tested by: flo, hackers@
MFC after: 1 month
Sponsored by: iXsystems, Inc.
- Only initialize the per-cpu switchticks and switchtime in sched_throw()
for the very first context switch on APs during boot. This avoids a
small gap between the middle of thread_exit() and sched_throw() where
time is not accounted to any thread.
- In thread_exit(), update the timestamp bookkeeping to track the changes
to mi_switch() introduced by td_rux so that the code once again matches
the comment claiming it is mimicing mi_switch(). Specifically, only
update the per-thread stats directly and depend on ruxagg() to update
p_rux rather than adjusting p_rux directly. While here, move the
timestamp bookkeeping as late in the function as possible.
Reviewed by: bde, kib
MFC after: 1 week
at SCHED_PRI_RANGE to prevent overflows in the priority value. This can
happen due to irregularities with clock interrupts under certain
virtualization environments.
Tested by: Larry Rosenman ler lerctr org
MFC after: 2 weeks
With the previous code, if the range of priorities for timeshare batch
threads was greater than RQ_NQS, then the threads with low priorities in
the part of the range above RQ_NQS would be scheduled to the run-queues
as if they had high priorities at the beginning of the range.
In other words, threads with a nice level of +N could be scheduled as
if they had a nice level of -M.
Reported by: George Mitchell <george@m5p.com>
Reviewed by: jhb
Tested by: George Mitchell <george@m5p.com> (earlier version)
MFC after: 1 week
itself, which sparc64 hardware doesn't support. One way to solve this
would be to directly call sched_preempt() instead of issuing a self-IPI.
However, quoting jhb@:
"On the other hand, you can probably just skip the IPI entirely if we are
going to send it to the current CPU. Presumably, once this routine
finishes, the current CPU will exit softlock (or will do so "soon") and
will then pick the next thread to run based on the adjustments made in
this routine, so there's no need to IPI the CPU running this routine
anyway. I think this is the better solution. Right now what is probably
happening on other platforms is as soon as this routine finishes the CPU
processes its self-IPI and causes mi_switch() which will just switch back
to the softclock thread it is already running."
- With r226054 and the the above change in place, sparc64 now no longer is
incompatible with ULE and vice versa. However, powerpc/E500 still is.
Submitted by: jhb
Reviewed by: jeff
pollution. That is a step further in the direction of building correct
policies for userland and modules on how to deal with the number of
maxcpus at runtime.
Reported by: jhb
Reviewed and tested by: pluknet
Approved by: re (kib)
cpuset_t objects.
That is going to offer the underlying support for a simple bump of
MAXCPU and then support for number of cpus > 32 (as it is today).
Right now, cpumask_t is an int, 32 bits on all our supported architecture.
cpumask_t on the other side is implemented as an array of longs, and
easilly extendible by definition.
The architectures touched by this commit are the following:
- amd64
- i386
- pc98
- arm
- ia64
- XEN
while the others are still missing.
Userland is believed to be fully converted with the changes contained
here.
Some technical notes:
- This commit may be considered an ABI nop for all the architectures
different from amd64 and ia64 (and sparc64 in the future)
- per-cpu members, which are now converted to cpuset_t, needs to be
accessed avoiding migration, because the size of cpuset_t should be
considered unknown
- size of cpuset_t objects is different from kernel and userland (this is
primirally done in order to leave some more space in userland to cope
with KBI extensions). If you need to access kernel cpuset_t from the
userland please refer to example in this patch on how to do that
correctly (kgdb may be a good source, for example).
- Support for other architectures is going to be added soon
- Only MAXCPU for amd64 is bumped now
The patch has been tested by sbruno and Nicholas Esborn on opteron
4 x 12 pack CPUs. More testing on big SMP is expected to came soon.
pluknet tested the patch with his 8-ways on both amd64 and i386.
Tested by: pluknet, sbruno, gianni, Nicholas Esborn
Reviewed by: jeff, jhb, sbruno
too much time. This can finish in a scheduler deadlock with ping-pong
between two threads.
One sample of this is:
- device lapic (to have a preemption point on critical_exit())
- options DEVICE_POLLING with HZ>1499 (to have lapic freq = hardclock freq)
- running a cpu intensive task (that does not enter the kernel)
- only one CPU on SMP or no SMP.
As requested by jhb@ 4BSD have received the same type of fix instead of
propagating the flag to the new thread.
Reviewed by: jhb, jeff
MFC after: 1 month
- Move the realtime priority range up above kernel sleep priorities and
just below interrupt thread priorities.
- Contract the interrupt and kernel sleep priority ranges a bit so that
the timesharing priority band can be increased. The new timeshare range
is now slightly larger than the old realtime + timeshare ranges.
- Change the ULE scheduler to no longer use realtime priorities for
interactive threads. Instead, the larger timeshare range is now split
into separate subranges for interactive and non-interactive ("batch")
threads. The end result is that interactive threads and non-interactive
threads still use the same priority ranges as before, but realtime
threads now have a separate, dedicated priority range.
- Do not modify the priority of non-timeshare threads in sched_sleep()
or via cv_broadcastpri(). Realtime and idle priority threads will
no longer have their priorities affected by sleeping in the kernel.
Reviewed by: jeff
interactive timeshare threads (PRI_*_INTERACTIVE) and non-interactive
timeshare threads (PRI_*_BATCH) and use these instead of PRI_*_REALTIME
and PRI_*_TIMESHARE. No functional change.
Reviewed by: jeff
thread and proc have been copied and zeroed from the old thread and
proc. Otherwise attempts to modify thread or process data in sched_fork()
could be undone.
- Don't copy td_{base,}_user_pri from the old thread to the new thread in
sched_fork_thread() in ULE. This is already done courtesy the bcopy()
of the thread copy region.
- Always initialize the real priority (td_priority) of new threads to the
new thread's base priority (td_base_pri) to avoid bogusly inheriting a
borrowed priority from the parent thread.
MFC after: 2 weeks
use sched_lend_user_prio to set lent priority.
- Improve pthread priority-inherit mutex, when a contender's priority is
lowered, repropagete priorities, this may cause mutex owner's priority
to be lowerd, in old code, mutex owner's priority is rise-only.
It is possible a lower priority thread lending priority to higher priority
thread, in old code, it is ignored, however the lending should always be
recorded, add field td_lend_user_pri to fix the problem, if a thread does
not have borrowed priority, its value is PRI_MAX.
MFC after: 1 week
This is just a cosmetic change for prettier output.
'indent' variable/parameter serves two purposes: it specifies whitespace
indentation level and also implies cpu group level/depth.
It would have been better to split those two uses,
but for now just a simple change.
MFC after: 1 week
The main goal of this is to generate timer interrupts only when there is
some work to do. When CPU is busy interrupts are generating at full rate
of hz + stathz to fullfill scheduler and timekeeping requirements. But
when CPU is idle, only minimum set of interrupts (down to 8 interrupts per
second per CPU now), needed to handle scheduled callouts is executed.
This allows significantly increase idle CPU sleep time, increasing effect
of static power-saving technologies. Also it should reduce host CPU load
on virtualized systems, when guest system is idle.
There is set of tunables, also available as writable sysctls, allowing to
control wanted event timer subsystem behavior:
kern.eventtimer.timer - allows to choose event timer hardware to use.
On x86 there is up to 4 different kinds of timers. Depending on whether
chosen timer is per-CPU, behavior of other options slightly differs.
kern.eventtimer.periodic - allows to choose periodic and one-shot
operation mode. In periodic mode, current timer hardware taken as the only
source of time for time events. This mode is quite alike to previous kernel
behavior. One-shot mode instead uses currently selected time counter
hardware to schedule all needed events one by one and program timer to
generate interrupt exactly in specified time. Default value depends of
chosen timer capabilities, but one-shot mode is preferred, until other is
forced by user or hardware.
kern.eventtimer.singlemul - in periodic mode specifies how much times
higher timer frequency should be, to not strictly alias hardclock() and
statclock() events. Default values are 2 and 4, but could be reduced to 1
if extra interrupts are unwanted.
kern.eventtimer.idletick - makes each CPU to receive every timer interrupt
independently of whether they busy or not. By default this options is
disabled. If chosen timer is per-CPU and runs in periodic mode, this option
has no effect - all interrupts are generating.
As soon as this patch modifies cpu_idle() on some platforms, I have also
refactored one on x86. Now it makes use of MONITOR/MWAIT instrunctions
(if supported) under high sleep/wakeup rate, as fast alternative to other
methods. It allows SMP scheduler to wake up sleeping CPUs much faster
without using IPI, significantly increasing performance on some highly
task-switching loads.
Tested by: many (on i386, amd64, sparc64 and powerc)
H/W donated by: Gheorghe Ardelean
Sponsored by: iXsystems, Inc.
thread in a racy manner, which can lead to attempting to migrate a
thread that is pinned to a CPU. Instead, have sched_switch() determine
which CPU a thread should run on if the current one is not allowed.
KASSERT in sched_bind() that the thread is not yet pinned to a CPU.
KASSERT in sched_switch() that only migratable threads or those moving
due to a sched_bind() are changing CPUs.
sched_affinity code came from jhb@.
MFC after: 2 weeks
IPI to a specific CPU by its cpuid. Replace calls to ipi_selected() that
constructed a mask for a single CPU with calls to ipi_cpu() instead. This
will matter more in the future when we transition from cpumask_t to
cpuset_t for CPU masks in which case building a CPU mask is more expensive.
Submitted by: peter, sbruno
Reviewed by: rookie
Obtained from: Yahoo! (x86)
MFC after: 1 month
am now able to run 32 cores ok.. but I still will hang
on buildworld with a NFS problem. I suspect I am missing
a patch for the netlogic rge driver.
JC check and see if I am missing anything except your
core-mask changes
Obtained from: JC
In the case of the thread being on a sleepqueue or a turnstile, the
sched_lock was acquired (without the aid of the td_lock interface) and
the td_lock was dropped. This was going to break locking rules on other
threads willing to access to the thread (via the td_lock interface) and
modify his flags (allowed as long as the container lock was different
by the one used in sched_switch).
In order to prevent this situation, while sched_lock is acquired there
the td_lock gets blocked. [0]
- Merge the ULE's internal function thread_block_switch() into the global
thread_lock_block() and make the former semantic as the default for
thread_lock_block(). This means that thread_lock_block() will not
disable interrupts when called (and consequently thread_unlock_block()
will not re-enabled them when called). This should be done manually
when necessary.
Note, however, that ULE's thread_unblock_switch() is not reaped
because it does reflect a difference in semantic due in ULE (the
td_lock may not be necessarilly still blocked_lock when calling this).
While asymmetric, it does describe a remarkable difference in semantic
that is good to keep in mind.
[0] Reported by: Kohji Okuno
<okuno dot kohji at jp dot panasonic dot com>
Tested by: Giovanni Trematerra
<giovanni dot trematerra at gmail dot com>
MFC: 2 weeks
or equial then PSOCK, not less or equial. Higher priority has lesser
numerical value.
Existing test does not allow for swapout of the thread waiting for
advisory lock, for exiting child or sleeping for timeout. On the other
hand, high-priority waiters of VFS/VM events can be swapped out.
Tested by: pho
Reviewed by: jhb
MFC after: 1 week
of the last tick we incremented on.
Submitted by: matthew.fleming/at/isilon.com, is/at/rambler-co.ru
Reviewed by: jeff (who thinks there should be a better way in the future)
Approved by: gnn (mentor)
MFC after: 3 weeks
This improvements aims for avoiding further cache-misses in scheduler
specific functions which need to keep track of average thread running
time and further locking in places setting for this flag.
Reported by: jeff (originally), kris (currently)
Reviewed by: jhb
Tested by: Giuseppe Cocomazzi <sbudella at email dot it>
- In 8.x and above the run-queue locks are nomore shared even in the
HTT case, so remove the special case.
- The deadlock explained in the removed comment here is still possible
even with different locks, with the contribution of tdq_lock_pair().
An explanation is here:
(hypotesis: a thread needs to migrate on another CPU, thread1 is doing
sched_switch_migrate() and thread2 is the one handling the sched_switch()
request or in other words, thread1 is the thread that needs to migrate
and thread2 is a thread that is going to be preempted, most likely an
idle thread. Also, 'old' is referred to the context (in terms of
run-queue and CPU) thread1 is leaving and 'new' is referred to the
context thread1 is going into. Finally, thread3 is doing tdq_idletd()
or sched_balance() and definitively doing tdq_lock_pair())
* thread1 blocks its td_lock. Now td_lock is 'blocked'
* thread1 drops its old runqueue lock
* thread1 acquires the new runqueue lock
* thread1 adds itself to the new runqueue and sends an IPI_PREEMPT
through tdq_notify() to the new CPU
* thread1 drops the new lock
* thread3, scanning the runqueues, locks the old lock
* thread2 received the IPI_PREEMPT and does thread_lock() with td_lock
pointing to the new runqueue
* thread3 wants to acquire the new runqueue lock, but it can't because
it is held by thread2 so it spins
* thread1 wants to acquire old lock, but as long as it is held by
thread3 it can't
* thread2 going further, at some point wants to switchin in thread1,
but it will wait forever because thread1->td_lock is in blocked state
This deadlock has been manifested mostly on 7.x and reported several time
on mailing lists under the voice 'spinlock held too long'.
Many thanks to des@ for having worked hard on producing suitable textdumps
and Jeff for help on the comment wording.
Reviewed by: jeff
Reported by: des, others
Tested by: des, Giovanni Trematerra
<giovanni dot trematerra at gmail dot com>
(STABLE_7 based version)
and it only optimized out an ipi or mwait in very few cases.
- Skip the adaptive idle code when running on SMT or HTT cores. This
just wastes cpu time that could be used on a busy thread on the same
core.
- Rename CG_FLAG_THREAD to CG_FLAG_SMT to be more descriptive. Re-use
CG_FLAG_THREAD to mean SMT or HTT.
Sponsored by: Nokia
is calculated as 0 which causes errors elsewhere.
Submitted by: KOIE Hidetaka <koie@suri.co.jp>
- When sched_affinity() is called with a thread that is not curthread we
need to handle the ON_RUNQ() case by adding the thread to the correct
run queue.
Submitted by: Justin Teller <justin.teller@gmail.com>
MFC after: 1 Week
sizeof("MAXCPU") being used to calculate a string length rather than
something more reasonable such as sizeof("32"). This shouldn't have
caused any ill effect until we run on machines with 1000000 or more
cpus.
with src/tools/sched/schedgraph.py. This allows developers to quickly
create a graphical view of ktr data for any resource in the system.
- Add sched_tdname() and the pcpu field 'name' for quickly and uniformly
identifying records associated with a thread or cpu.
- Reimplement the KTR_SCHED traces using the new generic facility.
Obtained from: attilio
Discussed with: jhb
Sponsored by: Nokia
usable for newer CPUs. The new value allows 2 x quad core configuration
dumps to fit within the initial buffer without reallocations.
Approved by: gnn (mentor) (older version)
Pointed out by: rdivacky
dump of detected ULE CPU topology. This dump can be used to check the
topology detection and for general system information.
An example of CPU topology dump is:
kern.sched.topology_spec: <groups>
<group level="1" cache-level="0">
<cpu count="8" mask="0xff">0, 1, 2, 3, 4, 5, 6, 7</cpu>
<flags></flags>
<children>
<group level="2" cache-level="0">
<cpu count="4" mask="0xf">0, 1, 2, 3</cpu>
<flags></flags>
</group>
<group level="2" cache-level="0">
<cpu count="4" mask="0xf0">4, 5, 6, 7</cpu>
<flags></flags>
</group>
</children>
</group>
</groups>
Reviewed by: jeff
Approved by: gnn (mentor)
sched_tick() to prevent multiple increments for one tick. This pushes
the value out of range and breaks priority calculation.
Reviewed by: kib
Found by: pho/nokia
Sponsored by: Nokia
MFC after: 3 days
from idle over the next tick.
- Add a new MD routine, cpu_wake_idle() to wakeup idle threads who are
suspended in cpu specific states. This function can fail and cause the
scheduler to fall back to another mechanism (ipi).
- Implement support for mwait in cpu_idle() on i386/amd64 machines that
support it. mwait is a higher performance way to synchronize cpus
as compared to hlt & ipis.
- Allow selecting the idle routine by name via sysctl machdep.idle. This
replaces machdep.cpu_idle_hlt. Only idle routines supported by the
current machine are permitted.
Sponsored by: Nokia
two ticks by counting the number of switches and the load when
sched_clock() is called.
- If the busy metric exceeds a threshold allow the idle thread to spin
waiting for new work for a brief period to avoid using IPIs. This
reduces the cost on the sender and receiver as well as reducing wakeup
latency considerably when it works.
Sponsored by: Nokia
variables and sysctl nodes.
- In reset walk the children of kern_sched_stats and reset the counters
via the oid_arg1 pointer. This allows us to add arbitrary counters to
the tree and still reset them properly.
- Define a set of switch types to be passed with flags to mi_switch().
These types are named SWT_*. These types correspond to SCHED_STATS
counters and are automatically handled in this way.
- Make the new SWT_ types more specific than the older switch stats.
There are now stats for idle switches, remote idle wakeups, remote
preemption ithreads idling, etc.
- Add switch statistics for ULE's pickcpu algorithm. These stats include
how much migration there is, how often affinity was successful, how
often threads were migrated to the local cpu on wakeup, etc.
Sponsored by: Nokia
o Implement IPI_PREEMPT,
o Set td_lock for the thread being switched out,
o For ULE & SMP, loop while td_lock points to blocked_lock for
the thread being switched in,
o Enable ULE by default in GENERIC and SKI,
fixed pri boost with '1' or any priority less than the current thread's
priority with a value greater than two. Default the boost to
PRI_MIN_TIMESHARE to prevent regular user-space threads from starving
threads in the kernel. This prevents these user-threads from also
being scheduled as if they are high fixed-priority kernel threads.
- Restore the setting of lowpri in tdq_choose(). It has to be either here
or in sched_switch(). I accidentally removed it from both places.
Tested by: kris
do this either. Simply check P_NOLOAD. It'd be nice if this was
in a thread flag so we didn't have an extra cache miss every time we
add and remove a thread from the run-queue.
rqindex back in struct thread.
- Compile kern_switch.c independently again and stop #include'ing it from
schedulers.
- Remove the ts_thread backpointers and convert most code to go from
struct thread to struct td_sched.
- Cleanup the ts_flags #define garbage that was causing us to sometimes
do things that expanded to td->td_sched->ts_thread->td_flags in 4BSD.
- Export the kern.sched sysctl node in sysctl.h
requiring the per-process spinlock to only requiring the process lock.
- Reflect these changes in the proc.h documentation and consumers throughout
the kernel. This is a substantial reduction in locking cost for these
fields and was made possible by recent changes to threading support.
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
While the KSE project was quite successful in bringing threading to
FreeBSD, the M:N approach taken by the kse library was never developed
to its full potential. Backwards compatibility will be provided via
libmap.conf for dynamically linked binaries and static binaries will
be broken.
sched_sleep(). This removes extra thread_lock() acquisition and
allows the scheduler to decide what to do with the static boost.
- Change the priority arguments to cv_* to match sleepq/msleep/etc.
where 0 means no priority change. Catch -1 in cv_broadcastpri() and
convert it to 0 for now.
- Set a flag when sleeping in a way that is compatible with swapping
since direct priority comparisons are meaningless now.
- Add a sysctl to ule, kern.sched.static_boost, that defaults to on which
controls the boost behavior. Turning it off gives better performance
in some workloads but needs more investigation.
- While we're modifying sleepq, change signal and broadcast to both
return with the lock held as the lock was held on enter.
Reviewed by: jhb, peter
tdq_runq_add to select the runq rather than hoping we set it properly
when we adjusted the priority. This involves the same number of
branches as before so should perform identically without the extra
fragility.
Tested by: bz
Reviewed by: bz
- Only calculate timeshare priorities once per tick or when a thread is woken
from sleeping.
- Keep the ts_runq pointer valid after all priority changes.
- Call tdq_runq_add() directly from sched_switch() without passing in via
tdq_add(). We don't need to adjust loads or runqs anymore.
- Sort tdq and ts_sched according to utilization to improve cache behavior.
Sponsored by: Nokia
- Normalize the preemption/ipi setting code by introducing sched_shouldpreempt()
so the logical is identical and not repeated between tdq_notify() and
sched_setpreempt().
- In tdq_notify() don't set NEEDRESCHED as we may not actually own the thread lock
this could have caused us to lose td_flags settings.
- Garbage collect some tunables that are no longer relevant.
- When searching for affinity search backwards in the tree from the last
cpu we ran on while the thread still has affinity for the group. This
can take advantage of knowledge of shared L2 or L3 caches among a
group of cores.
- When searching for the least loaded cpu find the least loaded cpu via
the least loaded path through the tree. This load balances system bus
links, individual cache levels, and hyper-threaded/SMT cores.
- Make the periodic balancer recursively balance the highest and lowest
loaded cpu across each link.
Add support for cpusets:
- Convert the cpuset to a simple native cpumask_t while the kernel still
only supports cpumask.
- Pass the derived cpumask down through the cpu_search functions to
restrict the result cpus.
- Make the various steal functions resilient to failure since all threads
can not run on all cpus any longer.
General improvements:
- Precisely track the lowest priority thread on every runq with
tdq_setlowpri(). Before it was more advisory but this ended up having
pathological behaviors.
- Remove many #ifdef SMP conditions to simplify the code.
- Get rid of the old cumbersome tdq_group. This is more naturally
expressed via the cpu_group tree.
Sponsored by: Nokia
Testing by: kris
tree structure that encodes the level of cache sharing and other
properties.
- Provide several convenience functions for creating one and two level
cpu trees as well as a default flat topology. The system now always
has some topology.
- On i386 and amd64 create a seperate level in the hierarchy for HTT
and multi-core cpus. This will allow the scheduler to intelligently
load balance non-uniform cores. Presently we don't detect what level
of the cache hierarchy is shared at each level in the topology.
- Add a mechanism for testing common topologies that have more information
than the MD code is able to provide via the kern.smp.topology tunable.
This should be considered a debugging tool only and not a stable api.
Sponsored by: Nokia