Obtained from: NetBSD as well (He submitted it there too)
make sure that teh shm region is beyond the sum of the text and data segs
as it was big progs could collide with the shm region.
but also IT ACTUALLY WORKS!
FreeBSD with options JREMOD now runs with no entries in the devsw tables
prior to the devices puting their own entries there..
Thanks to bde and terry for thoughts and comments.
next stop 'Real' devfs support in devices.
- Don't print out meaningless iCOMP numbers, those are for droids.
- Use a shorter wait to determine clock rate to avoid deficiencies
in DELAY().
- Use a fixed-point representation with 8 bits of fraction to store
the rate and rationalize the variable name. It would be
possible to use even more fraction if it turns out to be
worthwhile (I rather doubt it).
The question of source code arrangement remains unaddressed.
conflicted with S3 graphics cards. Now users should put sio[2-3]
in the config file if the hardware exisst, even if the probe is
certain to fail due to an interrupt conflict. Otherwise, ports
sharing the interrupt may fail the probe if the system is warm
booted while sio[2-3] are active (perhaps under another OS). The
same problem for nonstandard ports is now handled better than
before.
add a few safety checks in specfs because
now it's possible to get entries in [cd]devsw[] which are ALL NULL
so it's better to discover this BEFORE jumping into the d_open() entry..
more check to come later.. this getsthe code to the stage where I
can start testing it, even if I haven't caught every little error case...
I guess I'll find them quick enough..
That's EVERY SINGLE driver that has an entry in conf.c..
my next trick will be to define cdevsw[] and bdevsw[]
as empty arrays and remove all those DAMNED defines as well..
Each of these drivers has a SYSINIT linker set entry
that comes in very early.. and asks teh driver to add it's own
entry to the two devsw[] tables.
some slight reworking of the commits from yesterday (added the SYSINIT
stuff and some usually wrong but token DEVFS entries to all these
devices.
BTW does anyone know where the 'ata' entries in conf.c actually reside?
seems we don't actually have a 'ataopen() etc...
If you want to add a new device in conf.c
please make sure I know
so I can keep it up to date too..
as before, this is all dependent on #if defined(JREMOD)
(and #ifdef DEVFS in parts)
o Add signed/unsigned functionality to the matrox meteor device driver.
o Apply a few fixes to the sound driver.
o Add a ``SPIGOT_UNSECURE'' compile time definition so, if one defines
SPIGOT_UNSECURE in their conf file, then they can use the spigot w/o
root. There is a warning that this allows users access to the IO
page which is probably not secure.
Submitted by: james
totally dynamic. (the first was about 7 weeeks ago)
this is only the devices in i386/isa
I'll do more tomorrow.
they're completely masked by #ifdef JREMOD at this stage...
the eventual aim is that every driver will do a SYSINIT
at startup BEFORE the probes, which will effectively
link it into the devsw tables etc.
If I'd thought about it more I'd have put that in in this set (damn)
The ioconf lines generated by config will also end up in the
device's own scope as well, so ioconf.c will eventually be gutted
the SYSINIT call to the driver will include a phase where the
driver links it's ioconf line into a chain of such. when this phase is done
then the user can modify them with the boot: -c
config menu if he wants, just like now..
config will put the config lines out in the .h file
(e.g. in aha.h will be the addresses for the aha driver to look.)
as I said this is a very small first step..
the aim of THIS set of edits is to not have to edit conf.c at all when
adding a new device.. the tabe will be a simple skeleton..
when this is done, it will allow other changes to be made,
all teh time still having a fully working kernel tree,
but the logical outcome is the complete REMOVAL of the devsw tables.
By the end of this, linked in drivers will be exactly the same as
run-time loaded drivers, except they JUST HAPPEN to already be linked
and present at startup..
the SYSINIT calls will be the equivalent of the "init" call
made to a newly loaded driver in every respect.
For this edit,
each of the files has the following code inserted into it:
obviously, tailored to suit..
----------------------somewhere at the top:
#ifdef JREMOD
#include <sys/conf.h>
#define CDEV_MAJOR 13
#define BDEV_MAJOR 4
static void sd_devsw_install();
#endif /*JREMOD */
---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT
#ifdef JREMOD
sd_devsw_install();
#endif /*JREMOD*/
-----------------------at the bottom:
#ifdef JREMOD
struct bdevsw sd_bdevsw =
{ sdopen, sdclose, sdstrategy, sdioctl, /*4*/
sddump, sdsize, 0 };
struct cdevsw sd_cdevsw =
{ sdopen, sdclose, rawread, rawwrite, /*13*/
sdioctl, nostop, nullreset, nodevtotty,/* sd */
seltrue, nommap, sdstrategy };
static sd_devsw_installed = 0;
static void sd_devsw_install()
{
dev_t descript;
if( ! sd_devsw_installed ) {
descript = makedev(CDEV_MAJOR,0);
cdevsw_add(&descript,&sd_cdevsw,NULL);
#if defined(BDEV_MAJOR)
descript = makedev(BDEV_MAJOR,0);
bdevsw_add(&descript,&sd_bdevsw,NULL);
#endif /*BDEV_MAJOR*/
sd_devsw_installed = 1;
}
}
#endif /* JREMOD */
totally dynamic.
this is only the devices in i386/isa
I'll do more tomorrow.
they're completely masked by #ifdef JREMOD at this stage...
the eventual aim is that every driver will do a SYSINIT
at startup BEFORE the probes, which will effectively
link it into the devsw tables etc.
If I'd thought about it more I'd have put that in in this set (damn)
The ioconf lines generated by config will also end up in the
device's own scope as well, so ioconf.c will eventually be gutted
the SYSINIT call to the driver will include a phase where the
driver links it's ioconf line into a chain of such. when this phase is done
then the user can modify them with the boot: -c
config menu if he wants, just like now..
config will put the config lines out in the .h file
(e.g. in aha.h will be the addresses for the aha driver to look.)
as I said this is a very small first step..
the aim of THIS set of edits is to not have to edit conf.c at all when
adding a new device.. the tabe will be a simple skeleton..
when this is done, it will allow other changes to be made,
all teh time still having a fully working kernel tree,
but the logical outcome is the complete REMOVAL of the devsw tables.
By the end of this, linked in drivers will be exactly the same as
run-time loaded drivers, except they JUST HAPPEN to already be linked
and present at startup..
the SYSINIT calls will be the equivalent of the "init" call
made to a newly loaded driver in every respect.
For this edit,
each of the files has the following code inserted into it:
obviously, tailored to suit..
----------------------somewhere at the top:
#ifdef JREMOD
#include <sys/conf.h>
#define CDEV_MAJOR 13
#define BDEV_MAJOR 4
static void sd_devsw_install();
#endif /*JREMOD */
---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT
#ifdef JREMOD
sd_devsw_install();
#endif /*JREMOD*/
-----------------------at the bottom:
#ifdef JREMOD
struct bdevsw sd_bdevsw =
{ sdopen, sdclose, sdstrategy, sdioctl, /*4*/
sddump, sdsize, 0 };
struct cdevsw sd_cdevsw =
{ sdopen, sdclose, rawread, rawwrite, /*13*/
sdioctl, nostop, nullreset, nodevtotty,/* sd */
seltrue, nommap, sdstrategy };
static sd_devsw_installed = 0;
static void sd_devsw_install()
{
dev_t descript;
if( ! sd_devsw_installed ) {
descript = makedev(CDEV_MAJOR,0);
cdevsw_add(&descript,&sd_cdevsw,NULL);
#if defined(BDEV_MAJOR)
descript = makedev(BDEV_MAJOR,0);
bdevsw_add(&descript,&sd_bdevsw,NULL);
#endif /*BDEV_MAJOR*/
sd_devsw_installed = 1;
}
}
#endif /* JREMOD */
self-decompressing ram disk that I'm fiddling with..
(Note, this depends on the various syscalls having correctly set uio_segflag
before calling physio - I've checked and they look correct.)
What was happening, was that the main mfs loop was sleeping, and when it was
being awoken by a wakeup when it was supposed to process some IO requests.
The problem was that if it was being woken out of the tsleep() by a signal
at shutdown, it was going straight into dounmount() without servicing any
pending IO requests, causing dounmount() to fail because there were busy
buffers (and they could not be "processed" because the processing loop was
trying to unmount rather than dispatching into mfs_doio()).
This (dare I say it :-) appears to be a layering problem....
to get the prototypes.
Changed some `int's to `boolean_t's. boolean_t's are ints so they are
hard to distinguish from ints.
Converted function headers to old-style. ddb is written in K&R1 C
except where we broke it.
- don't #include other headers just to get struct names.
- don't use __BEGIN_DECLS/__END_DECLS for system prototypes. It is for
user prototypes.
- don't use extern.
- don't use lines longer than 80 columns.
- use alphabetical order.
- use tabs.
Uniformized idempotency ifdefs.