order to avoid the overhead of later page faults. In general, it
implements two cases: one for vnode-backed objects and one for
device-backed objects. Only the device-backed case is really
machine-dependent, belonging in the pmap.
This commit moves the vnode-backed case into the (relatively) new
function vm_map_pmap_enter(). On amd64 and i386, this commit only
amounts to code rearrangement. On alpha and ia64, the new machine
independent (MI) implementation of the vnode case is smaller and more
efficient than their pmap-based implementations. (The MI
implementation takes advantage of the fact that objects in -CURRENT
are ordered collections of pages.) On sparc64, pmap_object_init_pt()
hadn't (yet) been implemented.
- Add a parameter to vm_pageout_flush() that tells vm_pageout_flush()
whether its caller has locked the vm_object. (This is a temporary
measure to bootstrap vm_object locking.)
process to kill, don't block on a map lock while holding the
process lock. Instead, skip processes whose map locks are held
and find something else to kill.
- Add vm_map_trylock_read() to support the above.
Reviewed by: alc, mike (mentor)
It's unnecessary for two reasons: (1) Giant is at present already held in
such cases and (2) our various implementations of pmap_growkernel() look to
be MP safe. (For example, for sparc64 the proof of (2) is trivial.)
dereferenced when a process exits due to the vmspace ref-count being
bumped. Change shmexit() and shmexit_myhook() to take a vmspace instead
of a process and call it in vmspace_dofree(). This way if it is missed
in exit1()'s early-resource-free it will still be caught when the zombie is
reaped.
Also fix a potential race in shmexit_myhook() by NULLing out
vmspace->vm_shm prior to calling shm_delete_mapping() and free().
MFC after: 7 days
is now synchronized by a mutex, whereas access to user maps is still
synchronized by a lockmgr()-based lock. Why? No single type of lock,
including sx locks, meets the requirements of both types of vm map.
Sometimes we sleep while holding the lock on a user map. Thus, a
a mutex isn't appropriate. On the other hand, both lockmgr()-based
and sx locks release Giant when a thread/process blocks during
contention for a lock. This could lead to a race condition in a legacy
driver (that relies on Giant for synchronization) if it attempts to
kmem_malloc() and fails to immediately obtain the lock. Fortunately,
we never sleep while holding a system map lock.
- Add a mtx_destroy() to vm_object_collapse(). (This allows a bzero()
to migrate from _vm_object_allocate() to vm_object_zinit(), where it
will be performed less often.)
resource starvation we clean-up as much of the vmspace structure as we
can when the last process using it exits. The rest of the structure
is cleaned up when it is reaped. But since exit1() decrements the ref
count it is possible for a double-free to occur if someone else, such as
the process swapout code, references and then dereferences the structure.
Additionally, the final cleanup of the structure should not occur until
the last process referencing it is reaped.
This commit solves the problem by introducing a secondary reference count,
calling 'vm_exitingcnt'. The normal reference count is decremented on exit
and vm_exitingcnt is incremented. vm_exitingcnt is decremented when the
process is reaped. When both vm_exitingcnt and vm_refcnt are 0, the
structure is freed for real.
MFC after: 3 weeks
constants VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS, USRSTACK and PS_STRINGS.
This is mainly so that they can be variable even for the native abi, based
on different machine types. Get stack protections from the sysentvec too.
This makes it trivial to map the stack non-executable for certain abis, on
machines that support it.
handler in the kernel at the same time. Also, allow for the
exec_new_vmspace() code to build a different sized vmspace depending on
the executable environment. This is a big help for execing i386 binaries
on ia64. The ELF exec code grows the ability to map partial pages when
there is a page size difference, eg: emulating 4K pages on 8K or 16K
hardware pages.
Flesh out the i386 emulation support for ia64. At this point, the only
binary that I know of that fails is cvsup, because the cvsup runtime
tries to execute code in pages not marked executable.
Obtained from: dfr (mostly, many tweaks from me).
Use lmin(long, long), not min(u_int, u_int). This is a problem here on
ia64 which has *way* more than 2^32 pages of KVA. 281474976710655 pages
to be precice.
_vm_map_lock_read(), and _vm_map_trylock(). Submitted by: tegge
o Remove GIANT_REQUIRED from kmem_alloc_wait() and kmem_free_wakeup().
(This clears the way for exec_map accesses to move outside of Giant.
The exec_map is not a system map.)
o Remove some premature MPSAFE comments.
Reviewed by: tegge
and kmem_free_wakeup(). Previously, kmem_free_wakeup() always
called wakeup(). In general, no one was sleeping.
o Export vm_map_unlock_and_wait() and vm_map_wakeup() from vm_map.c
for use in vm_kern.c.
of the KVA space's size in addition to the amount of physical memory
and reduce it by a factor of two.
Under the old formula, our reservation amounted to one kernel map entry
per virtual page in the KVA space on a 4GB i386.
types are not required, as the overhead is unnecessary:
o In the i386 pmap_protect(), `sindex' and `eindex' represent page
indices within the 32-bit virtual address space.
o In swp_pager_meta_build() and swp_pager_meta_ctl(), use a temporary
variable to store the low few bits of a vm_pindex_t that gets used
as an array index.
o vm_uiomove() uses `osize' and `idx' for page offsets within a
map entry.
o In vm_object_split(), `idx' is a page offset within a map entry.
release of Giant around the direct manipulation of the vm_object and
the optional call to pmap_object_init_pt().
o In vm_map_findspace(), remove GIANT_REQUIRED. Instead, acquire and
release Giant around the occasional call to pmap_growkernel().
o In vm_map_find(), remove GIANT_REQUIRED.
release of Giant.
o Reduce the scope of GIANT_REQUIRED in vm_map_insert().
These changes will enable us to remove the acquisition and release
of Giant from obreak().