comes along and flushes a file which has been mmap()'d SHARED/RW, with
dirty pages, it was flushing the underlying VM object asynchronously,
resulting in thousands of 8K writes. With this change the VM Object flushing
code will cluster dirty pages in 64K blocks.
Note that until the low memory deadlock issue is reviewed, it is not safe
to allow the pageout daemon to use this feature. Forced pageouts still
use fs block size'd ops for the moment.
MFC after: 3 days
indirectly through vm_page_protect(). The one remaining page flag that
is updated by vm_page_protect() is already being updated by our various
pmap implementations.
Note: A later commit will similarly change the VM_PROT_READ case and
eliminate vm_page_protect().
be no major change in performance from this change at this time but this
will allow other work to progress: Giant lock removal around VM system
in favor of per-object mutexes, ranged fsyncs, more optimal COMMIT rpc's for
NFS, partial filesystem syncs by the syncer, more optimal object flushing,
etc. Note that the buffer cache is already using a similar splay tree
mechanism.
Note that a good chunk of the old hash table code is still in the tree.
Alan or I will remove it prior to the release if the new code does not
introduce unsolvable bugs, else we can revert more easily.
Submitted by: alc (this is Alan's code)
Approved by: re
- v_vflag is protected by the vnode lock and is used when synchronization
with VOP calls is needed.
- v_iflag is protected by interlock and is used for dealing with vnode
management issues. These flags include X/O LOCK, FREE, DOOMED, etc.
- All accesses to v_iflag and v_vflag have either been locked or marked with
mp_fixme's.
- Many ASSERT_VOP_LOCKED calls have been added where the locking was not
clear.
- Many functions in vfs_subr.c were restructured to provide for stronger
locking.
Idea stolen from: BSD/OS
vm_page_sleep_busy() with vm_page_sleep_if_busy(). At the same time,
increase the scope of the page queues lock. (This should significantly
reduce the locking overhead in vm_object_page_remove().)
o Apply some style fixes.
vm_page_rename() from vm_object_backing_scan(). vm_page_rename()
also performs vm_page_deactivate() on pages in the cache queues,
making the removed vm_page_deactivate() redundant.
types are not required, as the overhead is unnecessary:
o In the i386 pmap_protect(), `sindex' and `eindex' represent page
indices within the 32-bit virtual address space.
o In swp_pager_meta_build() and swp_pager_meta_ctl(), use a temporary
variable to store the low few bits of a vm_pindex_t that gets used
as an array index.
o vm_uiomove() uses `osize' and `idx' for page offsets within a
map entry.
o In vm_object_split(), `idx' is a page offset within a map entry.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
64-bit file sizes. This step simply addresses the remaining overflows,
and does attempt to optimise performance. The details are:
o Use a 64-bit type for the vm_object `size' and the size argument
to vm_object_allocate().
o Use the correct type for index variables in dev_pager_getpages(),
vm_object_page_clean() and vm_object_page_remove().
o Avoid an overflow in the i386 pmap_object_init_pt().
release of Giant.
o Reduce the scope of GIANT_REQUIRED in vm_map_insert().
These changes will enable us to remove the acquisition and release
of Giant from obreak().
into the vm_object layer:
o Acquire and release Giant in vm_object_shadow() and
vm_object_page_remove().
o Remove the GIANT_REQUIRED assertion preceding vm_map_delete()'s call
to vm_object_page_remove().
o Remove the acquisition and release of Giant around vm_map_lookup()'s
call to vm_object_shadow().
release Giant around vm_map_madvise()'s call to pmap_object_init_pt().
o Replace GIANT_REQUIRED in vm_object_madvise() with the acquisition
and release of Giant.
o Remove the acquisition and release of Giant from madvise().
vm_object_deallocate(), replacing the assertion GIANT_REQUIRED.
o Remove GIANT_REQUIRED from vm_map_protect() and vm_map_simplify_entry().
o Acquire and release Giant around vm_map_protect()'s call to pmap_protect().
Altogether, these changes eliminate the need for mprotect() to acquire
and release Giant.
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
style(9)
- Minor space adjustment in cases where we have "( ", " )", if(), return(),
while(), for(), etc.
- Add /* SYMBOL */ after a few #endifs.
Reviewed by: alc
moderately improves msync's and VM object flushing for objects containing
randomly dirtied pages (fsync(), msync(), filesystem update daemon),
and improves cpu use for small-ranged sequential msync()s in the face of
very large mmap()ings from O(N) to O(1) as might be performed by a database.
A sysctl, vm.msync_flush_flag, has been added and defaults to 3 (the two
committed optimizations are turned on by default). 0 will turn off both
optimizations.
This code has already been tested under stable and is one in a series of
memq / vp->v_dirtyblkhd / fsync optimizations to remove O(N^2) restart
conditions that will be coming down the pipe.
MFC after: 3 days
real effect.
Optimize vfs_msync(). Avoid having to continually drop and re-obtain
mutexes when scanning the vnode list. Improves looping case by 500%.
Optimize ffs_sync(). Avoid having to continually drop and re-obtain
mutexes when scanning the vnode list. This makes a couple of assumptions,
which I believe are ok, in regards to vnode stability when the mount list
mutex is held. Improves looping case by 500%.
(more optimization work is needed on top of these fixes)
MFC after: 1 week
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
most of these inlines had been bloated in -current far beyond their
original intent. Normalize prototypes and function declarations to be ANSI
only (half already were). And do some general cleanup.
(kernel size also reduced by 50-100K, but that isn't the prime intent)
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
introduce a modified allocation mechanism for mbufs and mbuf clusters; one
which can scale under SMP and which offers the possibility of resource
reclamation to be implemented in the future. Notable advantages:
o Reduce contention for SMP by offering per-CPU pools and locks.
o Better use of data cache due to per-CPU pools.
o Much less code cache pollution due to excessively large allocation macros.
o Framework for `grouping' objects from same page together so as to be able
to possibly free wired-down pages back to the system if they are no longer
needed by the network stacks.
Additional things changed with this addition:
- Moved some mbuf specific declarations and initializations from
sys/conf/param.c into mbuf-specific code where they belong.
- m_getclr() has been renamed to m_get_clrd() because the old name is really
confusing. m_getclr() HAS been preserved though and is defined to the new
name. No tree sweep has been done "to change the interface," as the old
name will continue to be supported and is not depracated. The change was
merely done because m_getclr() sounds too much like "m_get a cluster."
- TEMPORARILY disabled mbtypes statistics displaying in netstat(1) and
systat(1) (see TODO below).
- Fixed systat(1) to display number of "free mbufs" based on new per-CPU
stat structures.
- Fixed netstat(1) to display new per-CPU stats based on sysctl-exported
per-CPU stat structures. All infos are fetched via sysctl.
TODO (in order of priority):
- Re-enable mbtypes statistics in both netstat(1) and systat(1) after
introducing an SMP friendly way to collect the mbtypes stats under the
already introduced per-CPU locks (i.e. hopefully don't use atomic() - it
seems too costly for a mere stat update, especially when other locks are
already present).
- Optionally have systat(1) display not only "total free mbufs" but also
"total free mbufs per CPU pool."
- Fix minor length-fetching issues in netstat(1) related to recently
re-enabled option to read mbuf stats from a core file.
- Move reference counters at least for mbuf clusters into an unused portion
of the cluster itself, to save space and need to allocate a counter.
- Look into introducing resource freeing possibly from a kproc.
Reviewed by (in parts): jlemon, jake, silby, terry
Tested by: jlemon (Intel & Alpha), mjacob (Intel & Alpha)
Preliminary performance measurements: jlemon (and me, obviously)
URL: http://people.freebsd.org/~bmilekic/mb_alloc/
- Restore the previous order of setting up a new vm_object. The previous
had a small bug where we zero'd out the flags after we set the
OBJ_ONEMAPPING flag.
- Add several asserts of vm_mtx.
- Assert Giant is held rather than locking and unlocking it in a few
places.
- Add in some #ifdef objlocks code to lock individual vm objects when
vm objects each have their own lock someday.
- Don't bother acquiring the allproc lock for a ddb command. If DDB
blocked on the lock, that would be worse than having an inconsistent
allproc list.
vm_mtx does not recurse and is required for most low level
vm operations.
faults can not be taken without holding Giant.
Memory subsystems can now call the base page allocators safely.
Almost all atomic ops were removed as they are covered under the
vm mutex.
Alpha and ia64 now need to catch up to i386's trap handlers.
FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).
Reviewed (partially) by: jake, jhb
other "system" header files.
Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.
Sort sys/*.h includes where possible in affected files.
OK'ed by: bde (with reservations)
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
struct swblock entries by dividing the number of the entries by 2
until the swap metadata fits.
- Reject swapon(2) upon failure of swap_zone allocation.
This is just a temporary fix. Better solutions include:
(suggested by: dillon)
o reserving swap in SWAP_META_PAGES chunks, and
o swapping the swblock structures themselves.
Reviewed by: alfred, dillon
of explicit calls to lockmgr. Also provides macros for the flags
pased to specify shared, exclusive or release which map to the
lockmgr flags. This is so that the use of lockmgr can be easily
replaced with optimized reader-writer locks.
- Add some locking that I missed the first time.
and sysv shared memory support for it. It implements a new
PG_UNMANAGED flag that has slightly different characteristics
from PG_FICTICIOUS.
A new sysctl, kern.ipc.shm_use_phys has been added to enable the
use of physically-backed sysv shared memory rather then swap-backed.
Physically backed shm segments are not tracked with PV entries,
allowing programs which use a large shm segment as a rendezvous
point to operate without eating an insane amount of KVM in the
PV entry management. Read: Oracle.
Peter's OBJT_PHYS object will also allow us to eventually implement
page-table sharing and/or 4MB physical page support for such segments.
We're half way there.
to various pmap_*() functions instead of looking up the physical address
and passing that. In many cases, the first thing the pmap code was doing
was going to a lot of trouble to get back the original vm_page_t, or
it's shadow pv_table entry.
Inspired by: John Dyson's 1998 patches.
Also:
Eliminate pv_table as a seperate thing and build it into a machine
dependent part of vm_page_t. This eliminates having a seperate set of
structions that shadow each other in a 1:1 fashion that we often went to
a lot of trouble to translate from one to the other. (see above)
This happens to save 4 bytes of physical memory for each page in the
system. (8 bytes on the Alpha).
Eliminate the use of the phys_avail[] array to determine if a page is
managed (ie: it has pv_entries etc). Store this information in a flag.
Things like device_pager set it because they create vm_page_t's on the
fly that do not have pv_entries. This makes it easier to "unmanage" a
page of physical memory (this will be taken advantage of in subsequent
commits).
Add a function to add a new page to the freelist. This could be used
for reclaiming the previously wasted pages left over from preloaded
loader(8) files.
Reviewed by: dillon
madvise().
This feature prevents the update daemon from gratuitously flushing
dirty pages associated with a mapped file-backed region of memory. The
system pager will still page the memory as necessary and the VM system
will still be fully coherent with the filesystem. Modifications made
by other means to the same area of memory, for example by write(), are
unaffected. The feature works on a page-granularity basis.
MAP_NOSYNC allows one to use mmap() to share memory between processes
without incuring any significant filesystem overhead, putting it in
the same performance category as SysV Shared memory and anonymous memory.
Reviewed by: julian, alc, dg
Merge the contents (less some trivial bordering the silly comments)
of <vm/vm_prot.h> and <vm/vm_inherit.h> into <vm/vm.h>. This puts
the #defines for the vm_inherit_t and vm_prot_t types next to their
typedefs.
This paves the road for the commit to follow shortly: change
useracc() to use VM_PROT_{READ|WRITE} rather than B_{READ|WRITE}
as argument.
syncs the entire underlying file rather then just the requested range,
resulting in huge inefficiencies when the VM system is articulated in
a certain way. The VOP_FSYNC was also found to massively reduce NFS
performance in certain cases.
Change MADV_DONTNEED and MADV_FREE to call vm_page_dontneed() instead
of vm_page_deactivate(). Using vm_page_deactivate() causes all
inactive and cache pages to be recycled before the dontneed/free page
is recycled, effectively flushing our entire VM inactive & cache
queues continuously even if only a few pages are being actively MADV
free'd and reused (such as occurs with a sequential scan of a
memory-mapped file).
Reviewed by: Alan Cox <alc@cs.rice.edu>, David Greenman <dg@root.com>
vm_map.c:
Don't set OBJ_ONEMAPPING on arbitrary vm objects. Only default
and swap type vm objects should have it set. vm_object_deallocate
already handles these cases.
vm_object.c:
If OBJ_ONEMAPPING isn't already clear in vm_object_shadow,
we are in trouble. Instead of clearing it, make it
an assertion that it is already clear.
Remove a useless argument from vm_map_madvise's interface (vm_map.c,
vm_map.h, and vm_mmap.c).
Remove a redundant test in vm_uiomove (vm_map.c).
Make two changes to vm_object_coalesce:
1. Determine whether the new range of pages actually overlaps
the existing object's range of pages before calling vm_object_page_remove.
(Prior to this change almost 90% of the calls to vm_object_page_remove
were to remove pages that were beyond the end of the object.)
2. Free any swap space allocated to removed pages.
1. The size of vm_object::memq is vm_object::resident_page_count,
not vm_object::size.
2. The "size > 4" test sometimes results in the traversal of a ~1000 page
memq in order to locate ~10 pages.
Fix bug where an object's OBJ_WRITEABLE/OBJ_MIGHTBEDIRTY flags do
not get set under certain circumstances ( page rename case ).
Reviewed by: Alan Cox <alc@cs.rice.edu>, John Dyson
free swap space out from under a busy page. This is not legal because
the swap may be reallocated and I/O issued while I/O is still in
progress on the same swap page from the madvise()'d object. This bug
could only occur under extreme paging conditions but might not cause
an error until much later. As a side-benefit, madvise() is now even
smaller.
possible without actually unmapping it from the process.
As of now, I declare madvise() on OBJT_DEFAULT/OBJT_SWAP objects to be
'working and complete'.
OBJ_ONEMAPPING in the case where an object is extended by an
additional vm_map_entry must be allocated.
In vm_object_madvise(), remove calll to vm_page_cache() in MADV_FREE
case in order to avoid a page fault on page reuse. However, we still
mark the page as clean and destroy any swap backing store.
Submitted by: Alan Cox <alc@cs.rice.edu>
no major operational changes were made. The three core object->memq loops
were moved into a single inline procedure and various operational
characteristics of the collapse function were documented.
attempt to optimize forks but were essentially given-up on due to
problems and replaced with an explicit dup of the vm_map_entry structure.
Prior to the removal, they were entirely unused.
Since paging is in progress, page scan in vm_page_qcollapse() must be
protected at atleast splbio() to prevent pages from being ripped out from
under the scan.
The vm_map_insert()/vm_object_coalesce() optimization has been extended
to include OBJT_SWAP objects as well as OBJT_DEFAULT objects. This is
possible because it costs nothing to extend an OBJT_SWAP object with
the new swapper. We can't do this with the old swapper. The old swapper
used a linear array that would have had to have been reallocated, costing
time as well as a potential low-memory deadlock.
object->paging_offset has been removed - it was used to optimize a
single OBJT_SWAP collapse case yet introduced massive confusion throughout
vm_object.c. The optimization was inconsequential except for the
claim that it didn't have to allocate any memory. The optimization
has been removed.
madvise() has been fixed. The old madvise() could be made to operate
on shared objects which is a big no-no. The new one is much more careful
in what it modifies. MADV_FREE was totally broken and has now been fixed.
vm_page_rename() now automatically dirties a page, so explicit dirtying
of the page prior to calling vm_page_rename() has been removed.
changes to the VM system to support the new swapper, VM bug
fixes, several VM optimizations, and some additional revamping of the
VM code. The specific bug fixes will be documented with additional
forced commits. This commit is somewhat rough in regards to code
cleanup issues.
Reviewed by: "John S. Dyson" <root@dyson.iquest.net>, "David Greenman" <dg@root.com>
file to a stream socket. sendfile(2) is similar to implementations in
HP-UX, Linux, and other systems, but the API is more extensive and
addresses many of the complaints that the Apache Group and others have
had with those other implementations. Thanks to Marc Slemko of the
Apache Group for helping me work out the best API for this.
Anyway, this has the "net" result of speeding up sends of files over
TCP/IP sockets by about 10X (that is to say, uses 1/10th of the CPU
cycles) when compared to a traditional read/write loop.
needs to be called prior to freeing remaining pages in the object so that
the device pager has an opportunity to grab its "fake" pages. Also, in
the case of wired pages, the page must be made busy prior to calling
vm_page_remove. This is a difference from 2.2.x that I overlooked when
I brought these changes forward.
legitimately wired pages. Currently we print a diagnostic when this
happens, but this will be removed soon when it will be common for this
to occur with zero-copy TCP/IP buffers.
Add some overflow checks to read/write (from bde).
Change all modifications to vm_page::flags, vm_page::busy, vm_object::flags
and vm_object::paging_in_progress to use operations which are not
interruptable.
Reviewed by: Bruce Evans <bde@zeta.org.au>
managed to avoid corruption of this variable by luck (the compiler used a
memory read-modify-write instruction which wasn't interruptable) but other
architectures cannot.
With this change, I am now able to 'make buildworld' on the alpha (sfx: the
crowd goes wild...)
casting them to long, etc. Fixed some nearby printf bogons (sign
errors not warned about by gcc, and style bugs, but not truncation
of vm_ooffset_t's).
FreeBSD/alpha. The most significant item is to change the command
argument to ioctl functions from int to u_long. This change brings us
inline with various other BSD versions. Driver writers may like to
use (__FreeBSD_version == 300003) to detect this change.
The prototype FreeBSD/alpha machdep will follow in a couple of days
time.
unexpectedly do not complete writes even with sync I/O requests.
This should help the behavior of mmaped files when using
softupdates (and perhaps in other circumstances also.)
deallocation cycles. This should provide a measurable improvement
on swap and memory allocation on loaded systems. It is unlikely a
complete solution. Also, provide more map info with procfs.
Chuck Cranor spurred on this improvement.
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1) When freeing pages, it is a good idea to protect them off.
(This is probably gratuitious, but good form.)
2) Allow collapsing pages in the backing object that are
PQ_CACHE. This will improve memory utilization.
3) Correct the collapse code so that pages that were on the
cache queue are moved to the inactive queue. This is
done when pages are marked dirty (so that those pages
will be properly paged out instead of freed), so that
cached pages will not be paradoxically marked dirty.
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
2) Do not unnecessarily force page blocking when paging
pages out.
3) Further improve swap pager performance and correctness,
including fixing the paging in progress deadlock (except
in severe I/O error conditions.)
4) Enable vfs_ioopt=1 as a default.
5) Fix and enable the page prezeroing in SMP mode.
All in all, SMP systems especially should show a significant
improvement in "snappyness."
of the various ad-hoc schemes.
2) When bringing in UPAGES, the pmap code needs to do another vm_page_lookup.
3) When appropriate, set the PG_A or PG_M bits a-priori to both avoid some
processor errata, and to minimize redundant processor updating of page
tables.
4) Modify pmap_protect so that it can only remove permissions (as it
originally supported.) The additional capability is not needed.
5) Streamline read-only to read-write page mappings.
6) For pmap_copy_page, don't enable write mapping for source page.
7) Correct and clean-up pmap_incore.
8) Cluster initial kern_exec pagin.
9) Removal of some minor lint from kern_malloc.
10) Correct some ioopt code.
11) Remove some dead code from the MI swapout routine.
12) Correct vm_object_deallocate (to remove backing_object ref.)
13) Fix dead object handling, that had problems under heavy memory load.
14) Add minor vm_page_lookup improvements.
15) Some pages are not in objects, and make sure that the vm_page.c can
properly support such pages.
16) Add some more page deficit handling.
17) Some minor code readability improvements.
MUST be PG_BUSY. It is bogus to free a page that isn't busy,
because it is in a state of being "unavailable" when being
freed. The additional advantage is that the page_remove code
has a better cross-check that the page should be busy and
unavailable for other use. There were some minor problems
with the collapse code, and this plugs those subtile "holes."
Also, the vfs_bio code wasn't checking correctly for PG_BUSY
pages. I am going to develop a more consistant scheme for
grabbing pages, busy or otherwise. For now, we are stuck
with the current morass.
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
config option in pmap. Fix a problem with faulting in pages. Clean-up
some loose ends in swap pager memory management.
The system should be much more stable, but all subtile bugs aren't fixed yet.
Fix the UIO optimization code.
Fix an assumption in vm_map_insert regarding allocation of swap pagers.
Fix an spl problem in the collapse handling in vm_object_deallocate.
When pages are freed from vnode objects, and the criteria for putting
the associated vnode onto the free list is reached, either put the
vnode onto the list, or put it onto an interrupt safe version of the
list, for further transfer onto the actual free list.
Some minor syntax changes changing pre-decs, pre-incs to post versions.
Remove a bogus timeout (that I added for debugging) from vn_lock.
PHK will likely still have problems with the vnode list management, and
so do I, but it is better than it was.
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.
of vnodes and objects. There are some metadata performance improvements
that come along with this. There are also a few prototypes added when
the need is noticed. Changes include:
1) Cleaning up vref, vget.
2) Removal of the object cache.
3) Nuke vnode_pager_uncache and friends, because they aren't needed anymore.
4) Correct some missing LK_RETRY's in vn_lock.
5) Correct the page range in the code for msync.
Be gentle, and please give me feedback asap.