generator, found on IvyBridge and supposedly later CPUs, accessible
with RDRAND instruction.
From the Intel whitepapers and articles about Bull Mountain, it seems
that we do not need to perform post-processing of RDRAND results, like
AES-encryption of the data with random IV and keys, which was done for
Padlock. Intel claims that sanitization is performed in hardware.
Make both Padlock and Bull Mountain random generators support code
covered by kernel config options, for the benefit of people who prefer
minimal kernels. Also add the tunables to disable hardware generator
even if detected.
Reviewed by: markm, secteam (simon)
Tested by: bapt, Michael Moll <kvedulv@kvedulv.de>
MFC after: 3 weeks
- Stateful TCP offload drivers for Terminator 3 and 4 (T3 and T4) ASICs.
These are available as t3_tom and t4_tom modules that augment cxgb(4)
and cxgbe(4) respectively. The cxgb/cxgbe drivers continue to work as
usual with or without these extra features.
- iWARP driver for Terminator 3 ASIC (kernel verbs). T4 iWARP in the
works and will follow soon.
Build-tested with make universe.
30s overview
============
What interfaces support TCP offload? Look for TOE4 and/or TOE6 in the
capabilities of an interface:
# ifconfig -m | grep TOE
Enable/disable TCP offload on an interface (just like any other ifnet
capability):
# ifconfig cxgbe0 toe
# ifconfig cxgbe0 -toe
Which connections are offloaded? Look for toe4 and/or toe6 in the
output of netstat and sockstat:
# netstat -np tcp | grep toe
# sockstat -46c | grep toe
Reviewed by: bz, gnn
Sponsored by: Chelsio communications.
MFC after: ~3 months (after 9.1, and after ensuring MFC is feasible)
ataraid(4) previously was present there and having GEOM RAID is convinient.
Unlike other classes GEOM RAID can be set up from BIOS before install and
users are expecting it to be detected automatically.
<20120222095239.Horde.0hpYHJjmRSRPRKzXsoFRbYk@webmail.leidinger.net>.
According to some private emails received, it apparently is not unpopular
to use at least Quad GigaSwift cards driven by cas(4) in x86 machines.
MFC after: 1 week
The GPL infected parts which were blocking the inclusion of snd_csa
and snd_emu10kx in GENERIC have recently been removed from the tree.
I'm also adding snd_cmi to GENERIC, which I originally intended to
add when we enabled sound support by default.
Discussed with: jhb, pfg, Yuriy Tsibizov <yuriy.tsibizov@gfk.ru>
Approved by: jhb
As of FreeBSD 8, this driver should not be used. Applications that use
posix_openpt(2) and openpty(3) use the pts(4) that is built into the
kernel unconditionally. If it turns out high profile depend on the
pty(4) module anyway, I'd rather get those fixed. So please report any
issues to me.
The pty(4) module is still available as a kernel module of course, so a
simple `kldload pty' can be used to run old-style pseudo-terminals.
The isci driver is for the integrated SAS controller in the Intel C600
(Patsburg) chipset. Source files in sys/dev/isci directory are
FreeBSD-specific, and sys/dev/isci/scil subdirectory contains
an OS-agnostic library (SCIL) published by Intel to control the SAS
controller. This library is used primarily as-is in this driver, with
some post-processing to better integrate into the kernel build
environment.
isci.4 and a README in the sys/dev/isci directory contain a few
additional details.
This driver is only built for amd64 and i386 targets.
Sponsored by: Intel
Reviewed by: scottl
Approved by: scottl
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month
configurations for various architectures in FreeBSD 10.x. This allows
basic Capsicum functionality to be used in the default FreeBSD
configuration on non-embedded architectures; process descriptors are not
yet enabled by default.
MFC after: 3 months
Sponsored by: Google, Inc
replace amd(4) with the former in the amd64, i386 and pc98 GENERIC kernel
configuration files. Besides duplicating functionality, amd(4), which
previously also supported the AMD Am53C974, unlike esp(4) is no longer
maintained and has accumulated enough bit rot over time to always cause
a panic during boot as long as at least one target is attached to it
(see PR 124667).
PR: 124667
Obtained from: NetBSD (based on)
MFC after: 3 days
thing when changing the debugging options as part of head becoming a new
stable branch. It may also help people who for one reason or another want
to run head but don't want it slowed down by the debugging support.
Reviewed by: kib
As part of the 8.0-RELEASE cycle this was done in stable/8 (r199112)
but was left alone in head so people could work on fixing an issue that
caused boot failure on some motherboards. Apparently nobody has worked
on it and we are getting reports of boot failure with the 9.0 test builds.
So this time I'll comment out the driver in head (still hoping someone
will work on it) and MFC to stable/9.
Submitted by: Alberto Villa <avilla at FreeBSD dot org>
thanks for their contiued support to FreeBSD.
This is version 10.80.00.003 from codeset 10.2.1 [1]
Obtained from: LSI http://kb.lsi.com/Download16574.aspx [1]
devices supported by puc(4) to work "out of the box" since puc.ko does
not work "out of the box".
Reviewed by: marcel
Approved by: re (kib)
MFC after: 1 week
NFSCL, NFSD instead of NFSCLIENT, NFSSERVER since
NFSCL and NFSD are now the defaults. The client change is
needed for diskless configurations, so that the root
mount works for fstype nfs.
Reported by seanbru at yahoo-inc.com for i386/XEN.
Approved by: re (hrs)
The generic sound driver has been added, along with enough
device-specific drivers to support the most common audio
chipsets.
We've discussed enabling it from time to time over the years
and we've received numerous requests from users, so we decided
that shipping 9.0 with working audio by default would be the
best thing to do.
Bug reports should be sent to the multimedia@ mailing list, as
usual.
Approved by: mav
No objection: re
NFS client (which I guess is no longer experimental). The fstype "newnfs"
is now "nfs" and the regular/old NFS client is now fstype "oldnfs".
Although mounts via fstype "nfs" will usually work without userland
changes, an updated mount_nfs(8) binary is needed for kernels built with
"options NFSCL" but not "options NFSCLIENT". Updated mount_nfs(8) and
mount(8) binaries are needed to do mounts for fstype "oldnfs".
The GENERIC kernel configs have been changed to use options
NFSCL and NFSD (the new client and server) instead of NFSCLIENT and NFSSERVER.
For kernels being used on diskless NFS root systems, "options NFSCL"
must be in the kernel config.
Discussed on freebsd-fs@.
device in /dev/ create symbolic link with adY name, trying to mimic old ATA
numbering. Imitation is not complete, but should be enough in most cases to
mount file systems without touching /etc/fstab.
- To know what behavior to mimic, restore ATA_STATIC_ID option in cases
where it was present before.
- Add some more details to UPDATING.
stack. It means that all legacy ATA drivers are disabled and replaced by
respective CAM drivers. If you are using ATA device names in /etc/fstab or
other places, make sure to update them respectively (adX -> adaY,
acdX -> cdY, afdX -> daY, astX -> saY, where 'Y's are the sequential
numbers for each type in order of detection, unless configured otherwise
with tunables, see cam(4)).
ataraid(4) functionality is now supported by the RAID GEOM class.
To use it you can load geom_raid kernel module and use graid(8) tool
for management. Instead of /dev/arX device names, use /dev/raid/rX.
Introduce the AHB glue for Atheros embedded systems. Right now it's
hard-coded for the AR9130 chip whose support isn't yet in this HAL;
it'll be added in a subsequent commit.
Kernel configuration files now need both 'ath' and 'ath_pci' devices; both
modules need to be loaded for the ath device to work.
configurations and make it opt-in for those who want it. LINT will
still build it.
While it may be a perfect win in some scenarios, it still troubles users
(see PRs) in general cases. In addition we are still allocating resources
even if disabled by sysctl and still leak arp/nd6 entries in case of
interface destruction.
Discussed with: qingli (2010-11-24, just never executed)
Discussed with: juli (OCTEON1)
PR: kern/148018, kern/155604, kern/144917, kern/146792
MFC after: 2 weeks
The controller is commonly found on DM&P Vortex86 x86 SoC. The
driver supports all hardware features except flow control. The
flow control was intentionally disabled due to silicon bug.
DM&P Electronics, Inc. provided all necessary information including
sample board to write driver and answered many questions I had.
Many thanks for their support of FreeBSD.
H/W donated by: DM&P Electronics, Inc.
zones for each malloc bucket size. The purpose is to isolate
different malloc types into hash classes, so that any buffer overruns
or use-after-free will usually only affect memory from malloc types in
that hash class. This is purely a debugging tool; by varying the hash
function and tracking which hash class was corrupted, the intersection
of the hash classes from each instance will point to a single malloc
type that is being misused. At this point inspection or memguard(9)
can be used to catch the offending code.
Add MALLOC_DEBUG_MAXZONES=8 to -current GENERIC configuration files.
The suggestion to have this on by default came from Kostik Belousov on
-arch.
This code is based on work by Ron Steinke at Isilon Systems.
Reviewed by: -arch (mostly silence)
Reviewed by: zml
Approved by: zml (mentor)
This driver was written by Alexander Pohoyda and greatly enhanced
by Nikolay Denev. I don't have these hardwares but this driver was
tested by Nikolay Denev and xclin.
Because SiS didn't release data sheet for this controller, programming
information came from Linux driver and OpenSolaris. Unlike other open
source driver for SiS190/191, sge(4) takes full advantage of TX/RX
checksum offloading and does not require additional copy operation in
RX handler.
The controller seems to have advanced offloading features like VLAN
hardware tag insertion/stripping, TCP segmentation offload(TSO) as
well as jumbo frame support but these features are not available
yet. Special thanks to xclin <xclin<> cs dot nctu dot edu dot tw>
who sent fix for receiving VLAN oversized frames.
that we support I486 and I586 CPUs in the GENERIC kernel, users wants these
support would have to build a custom kernel to explicitly disable SSE
anyways.
MFC after: 1 month
COMPAT_43TTY enables the sgtty interface. Even though its exposure has
only been removed in FreeBSD 8.0, it wasn't used by anything in the base
system in FreeBSD 5.x (possibly even 4.x?). On those releases, if your
ports/packages are less than two years old, they will prefer termios
over sgtty.
the 'debugging' section of any HEAD kernel and enable for the mainstream
ones, excluding the embedded architectures.
It may, of course, enabled on a case-by-case basis.
Sponsored by: Sandvine Incorporated
Requested by: emaste
Discussed with: kib
has proven to have a good effect when entering KDB by using a NMI,
but it completely violates all the good rules about interrupts
disabled while holding a spinlock in other occasions. This can be the
cause of deadlocks on events where a normal IPI_STOP is expected.
* Adds an new IPI called IPI_STOP_HARD on all the supported architectures.
This IPI is responsible for sending a stop message among CPUs using a
privileged channel when disponible. In other cases it just does match a
normal IPI_STOP.
Right now the IPI_STOP_HARD functionality uses a NMI on ia32 and amd64
architectures, while on the other has a normal IPI_STOP effect. It is
responsibility of maintainers to eventually implement an hard stop
when necessary and possible.
* Use the new IPI facility in order to implement a new userend SMP kernel
function called stop_cpus_hard(). That is specular to stop_cpu() but
it does use the privileged channel for the stopping facility.
* Let KDB use the newly introduced function stop_cpus_hard() and leave
stop_cpus() for all the other cases
* Disable interrupts on CPU0 when starting the process of APs suspension.
* Style cleanup and comments adding
This patch should fix the reboot/shutdown deadlocks many users are
constantly reporting on mailing lists.
Please don't forget to update your config file with the STOP_NMI
option removal
Reviewed by: jhb
Tested by: pho, bz, rink
Approved by: re (kib)
net80211 wireless stack. This work is based on the March 2009 D3.0 draft
standard. This standard is expected to become final next year.
This includes two main net80211 modules, ieee80211_mesh.c
which deals with peer link management, link metric calculation,
routing table control and mesh configuration and ieee80211_hwmp.c
which deals with the actually routing process on the mesh network.
HWMP is the mandatory routing protocol on by the mesh standard, but
others, such as RA-OLSR, can be implemented.
Authentication and encryption are not implemented.
There are several scripts under tools/tools/net80211/scripts that can be
used to test different mesh network topologies and they also teach you
how to setup a mesh vap (for the impatient: ifconfig wlan0 create
wlandev ... wlanmode mesh).
A new build option is available: IEEE80211_SUPPORT_MESH and it's enabled
by default on GENERIC kernels for i386, amd64, sparc64 and pc98.
Drivers that support mesh networks right now are: ath, ral and mwl.
More information at: http://wiki.freebsd.org/WifiMesh
Please note that this work is experimental. Also, please note that
bridging a mesh vap with another network interface is not yet supported.
Many thanks to the FreeBSD Foundation for sponsoring this project and to
Sam Leffler for his support.
Also, I would like to thank Gateworks Corporation for sending me a
Cambria board which was used during the development of this project.
Reviewed by: sam
Approved by: re (kensmith)
Obtained from: projects/mesh11s
More applications (including Firefox) seem to depend on this nowadays,
so not having this enabled by default is a bad idea.
Proposed by: miwi
Patch by: Florian Smeets <flo kasimir com>
Approved by: re (kib)
In the past there have been some reports of PRINTF_BUFR_SIZE not
functioning correctly. Instead of having garbled console messages, we
should just see whether the issues are still there and analyze them.
Approved by: re
controller. These controllers are also known as L1C(AR8131) and
L2C(AR8132) respectively. These controllers resembles the first
generation controller L1 but usage of different descriptor format
and new register mappings over L1 register space requires a new
driver. There are a couple of registers I still don't understand
but the driver seems to have no critical issues for performance and
stability. Currently alc(4) supports the following hardware
features.
o MSI
o TCP Segmentation offload
o Hardware VLAN tag insertion/stripping
o Tx/Rx interrupt moderation
o Hardware statistics counters(dev.alc.%d.stats)
o Jumbo frame
o WOL
AR8131/AR8132 also supports Tx checksum offloading but I disabled
it due to stability issues. I'm not sure this comes from broken
sample boards or hardware bugs. If you know your controller works
without problems you can still enable it. The controller has a
silicon bug for Rx checksum offloading, so the feature was not
implemented.
I'd like to say big thanks to Atheros. Atheros kindly sent sample
boards to me and answered several questions I had.
HW donated by: Atheros Communications, Inc.
goal of shipping 8.0 with MAC support in the default kernel. No policies
will be compiled in or enabled by default, but it will now be possible to
load them at boot or runtime without a kernel recompile.
While the framework is not believed to impose measurable overhead when no
policies are loaded (a result of optimization over the past few months in
HEAD), we'll continue to benchmark and optimize as the release approaches.
Please keep an eye out for performance or functionality regressions that
could be a result of this change.
Approved by: re (kensmith)
Obtained from: TrustedBSD Project
driver in Linux 2.6. uscanner was just a simple wrapper around a fifo and
contained no logic, the default interface is now libusb (supported by sane).
Reviewed by: HPS
- add a reference to the config(5) manpage;
- hopefully clarify the format of the 'env FILENAME' directive.
I am putting these notes in sys/${arch}/conf/GENERIC and not
in sys/conf/NOTES because:
1. i386/GENERIC already had reference to a similar option (hints..)
and to documentation (handbook)
2. GENERIC is what most users look at when they have to modify or
create a new kernel config, so having the suggestion there is
more effective.
I am only touching i386 and amd64 because the other GENERIC files
are already out of sync, and I am not sure what is the overall plan.
MFC after: 3 days
to GENERIC configuration files. This brings what's in 8.x in sync
with what is in 7.x, but does not change any current defaults.
Possibly they should now be enabled in head by default?
Sgtty is a programming interface that has been replaced by termios over
the years. In June we already removed <sgtty.h>, which exposes the
ioctl()'s that are implemented by this interface. The importance of this
flag is overrated right now.
module; the ath module now brings in the hal support. Kernel
config files are almost backwards compatible; supplying
device ath_hal
gives you the same chip support that the binary hal did but you
must also include
options AH_SUPPORT_AR5416
to enable the extended format descriptors used by 11n parts.
It is now possible to control the chip support included in a
build by specifying exactly which chips are to be supported
in the config file; consult ath_hal(4) for information.
controller. The controller is also known as L1E(AR8121) and
L2E(AR8113/AR8114). Unlike its predecessor Attansic L1,
AR8121/AR8113/AR8114 uses completely different Rx logic such that
it requires separate driver. Datasheet for AR81xx is not available
to open source driver writers but it shares large part of Tx and
PHY logic of L1. I still don't understand some part of register
meaning and some MAC statistics counters but the driver seems to
have no critical issues for performance and stability.
The AR81xx requires copy operation to pass received frames to upper
stack such that ale(4) consumes a lot of CPU cycles than that of
other controller. A couple of silicon bugs also adds more CPU
cycles to address the known hardware bug. However, if you have fast
CPU you can still saturate the link.
Currently ale(4) supports the following hardware features.
- MSI.
- TCP Segmentation offload.
- Hardware VLAN tag insertion/stripping with checksum offload.
- Tx TCP/UDP checksum offload and Rx IP/TCP/UDP checksum offload.
- Tx/Rx interrupt moderation.
- Hardware statistics counters.
- Jumbo frame.
- WOL.
AR81xx PCIe ethernet controllers are mainly found on ASUS EeePC or
P5Q series of ASUS motherboards. Special thanks to Jeremy Chadwick
who sent the hardware to me. Without his donation writing a driver
for AR81xx would never have been possible. Big thanks to all people
who reported feedback or tested patches.
HW donated by: koitsu
Tested by: bsam, Joao Barros <joao.barros <> gmail DOT com >
Jan Henrik Sylvester <me <> janh DOT de >
Ivan Brawley < ivan <> brawley DOT id DOT au >,
CURRENT ML
This was located in the ubsa driver, but should be moved into a separate
driver:
- 3G modems provide multiple serial ports to allow AT commands while the PPP
connection is up.
- 3G modems do not provide baud rate or other serial port settings.
- Huawei cards need specific initialisation.
- ubsa is for Belkin adapters, an Linuxy choice for another device like 3G.
Speeds achieved here with a weak signal at best is ~40kb/s (UMTS). No spooky
STALLED messages as well.
Next: Move over all entries for Sierra and Novatel cards once I have found
testers, and implemented serial port enumeration for Sierra (or rather have
Andrea Guzzo do it). They list all endpoints in 1 iface instead of 4 ifaces.
Submitted by: aguzzo@anywi.com
MFC after: 3 weeks
so the benefit of having acpi.ko as a standalone module is outweighed by
the complications of drivers compiled into the kernel not including ACPI
attachments by default.
Discussed on: current
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
As clearly mentioned on the mailing lists, there is a list of drivers
that have not been ported to the MPSAFE TTY layer yet. Remove them from
the kernel configuration files. This means people can now still use
these drivers if they explicitly put them in their kernel configuration
file, which is good.
People should keep in mind that after August 10, these drivers will not
work anymore. Even though owners of the hardware are capable of getting
these drivers working again, I will see if I can at least get them to a
compilable state (if time permits).
The uart(4) driver has the advantage of supporting a wider variety of
hardware on a greater amount of platforms. This driver has already been
the standard on platforms such as ia64, powerpc and sparc64.
I've decided not to change anything on pc98. I'd rather let people from
the pc98 team look at this.
Approved by: philip (mentor), marcel
Note this includes changes to all drivers and moves some device firmware
loading to use firmware(9) and a separate module (e.g. ral). Also there
no longer are separate wlan_scan* modules; this functionality is now
bundled into the wlan module.
Supported by: Hobnob and Marvell
Reviewed by: many
Obtained from: Atheros (some bits)
to detect (or load) kernel NLM support in rpc.lockd. Remove the '-k'
option to rpc.lockd and make kernel NLM the default. A user can still
force the use of the old user NLM by building a kernel without NFSLOCKD
and/or removing the nfslockd.ko module.
cards:
o RocketRAID 172x series
o RocketRAID 174x series
o RocketRAID 2210
o RocketRAID 222x series
o RocketRAID 2240
o RocketRAID 230x series
o RocketRAID 231x series
o RocketRAID 232x series
o RocketRAID 2340
o RocketRAID 2522
Many thanks to Highpoint for their continued support of FreeBSD.
Submitted by: Highpoint
- Introduce per-architecture stack_machdep.c to hold stack_save(9).
- Introduce per-architecture machine/stack.h to capture any common
definitions required between db_trace.c and stack_machdep.c.
- Add new kernel option "options STACK"; we will build in stack(9) if it is
defined, or also if "options DDB" is defined to provide compatibility
with existing users of stack(9).
Add new stack_save_td(9) function, which allows the capture of a stacktrace
of another thread rather than the current thread, which the existing
stack_save(9) was limited to. It requires that the thread be neither
swapped out nor running, which is the responsibility of the consumer to
enforce.
Update stack(9) man page.
Build tested: amd64, arm, i386, ia64, powerpc, sparc64, sun4v
Runtime tested: amd64 (rwatson), arm (cognet), i386 (rwatson)