udev_t in the kernel but still called dev_t in userland.
Provide functions to manipulate both types:
major() umajor()
minor() uminor()
makedev() umakedev()
dev2udev() udev2dev()
For now they're functions, they will become in-line functions
after one of the next two steps in this process.
Return major/minor/makedev to macro-hood for userland.
Register a name in cdevsw[] for the "filedescriptor" driver.
In the kernel the udev_t appears in places where we have the
major/minor number combination, (ie: a potential device: we
may not have the driver nor the device), like in inodes, vattr,
cdevsw registration and so on, whereas the dev_t appears where
we carry around a reference to a actual device.
In the future the cdevsw and the aliased-from vnode will be hung
directly from the dev_t, along with up to two softc pointers for
the device driver and a few houskeeping bits. This will essentially
replace the current "alias" check code (same buck, bigger bang).
A little stunt has been provided to try to catch places where the
wrong type is being used (dev_t vs udev_t), if you see something
not working, #undef DEVT_FASCIST in kern/kern_conf.c and see if
it makes a difference. If it does, please try to track it down
(many hands make light work) or at least try to reproduce it
as simply as possible, and describe how to do that.
Without DEVT_FASCIST I belive this patch is a no-op.
Stylistic/posixoid comments about the userland view of the <sys/*.h>
files welcome now, from userland they now contain the end result.
Next planned step: make all dev_t's refer to the same devsw[] which
means convert BLK's to CHR's at the perimeter of the vnodes and
other places where they enter the game (bootdev, mknod, sysctl).
Virtualize bdevsw[] from cdevsw. bdevsw() is now an (inline)
function.
Join CDEV_MODULE and BDEV_MODULE to DEV_MODULE (please pay attention
to the order of the cmaj/bmaj arguments!)
Join CDEV_DRIVER_MODULE and BDEV_DRIVER_MODULE to DEV_DRIVER_MODULE
(ditto!)
(Next step will be to convert all bdev dev_t's to cdev dev_t's
before they get to do any damage^H^H^H^H^H^Hwork in the kernel.)
peripheral drivers can determine where in the devstat(9) list they are
inserted.
This requires recompilation of libdevstat, systat, vmstat, rpc.rstatd, and
any ports that depend on the devstat code, since the size of the devstat
structure has changed. The devstat version number has been incremented as
well to reflect the change.
This sorts devices in the devstat list in "more interesting" to "less
interesting" order. So, for instance, da devices are now more important
than floppy drives, and so will appear before floppy drives in the default
output from systat, iostat, vmstat, etc.
The order of devices is, for now, kept in a central table in devicestat.h.
If individual drivers were able to make a meaningful decision on what
priority they should be at attach time, we could consider splitting the
priority information out into the various drivers. For now, though, they
have no way of knowing that, so it's easier to put them in an easy to find
table.
Also, move the checkversion() call in vmstat(8) to a more logical place.
Thanks to Bruce and David O'Brien for suggestions, for reviewing this, and
for putting up with the long time it has taken me to commit it. Bruce did
object somewhat to the central priority table (he would rather the
priorities be distributed in each driver), so his objection is duly noted
here.
Reviewed by: bde, obrien
There is only cdevsw (which should be renamed in a later edit to deventry
or something). cdevsw contains the union of what were in both bdevsw an
cdevsw entries. The bdevsw[] table stiff exists and is a second pointer
to the cdevsw entry of the device. it's major is in d_bmaj rather than
d_maj. some cleanup still to happen (e.g. dsopen now gets two pointers
to the same cdevsw struct instead of one to a bdevsw and one to a cdevsw).
rawread()/rawwrite() went away as part of this though it's not strictly
the same patch, just that it involves all the same lines in the drivers.
cdroms no longer have write() entries (they did have rawwrite (?)).
tapes no longer have support for bdev operations.
Reviewed by: Eivind Eklund and Mike Smith
Changes suggested by eivind.
as the value in b_vp is often not really what you want.
(and needs to be frobbed). more cleanups will follow this.
Reviewed by: Bruce Evans <bde@freebsd.org>
FreeBSD/alpha. The most significant item is to change the command
argument to ioctl functions from int to u_long. This change brings us
inline with various other BSD versions. Driver writers may like to
use (__FreeBSD_version == 300003) to detect this change.
The prototype FreeBSD/alpha machdep will follow in a couple of days
time.
This will make a number of things easier in the future, as well as (finally!)
avoiding the Id-smashing problem which has plagued developers for so long.
Boy, I'm glad we're not using sup anymore. This update would have been
insane otherwise.
Saves about 280 butes of source per driver, 56 bytes in object size
and another 56 bytes moves from data to bss.
No functional change intended nor expected.
GENERIC should be about one k smaller now :-)
use sd87a or sd237e even if they start at the beginning of the slice.
You can also use sd85c if you prefer, although you need to change the
type field in the disklabel to "4.2BSD".
mailing list.
When initiating a write, ccdbuffer() returns two "struct ccdbuf *"s
linked together by the cb_mirror field. "cb_pflags &
CCDPF_MIRROR_DONE" is set to 0 on both of them.
When a component returns to ccdiodone(), it checks if "cb_pflags &
CCDPF_MIRROR_DONE" is set or not. If not, it sets the partner's
flag and returns. If it is, it means its partner has already
returned, so it will go to the regular cleanup (which is in the
fallthrough code).
There should be no performance or functionality changes unless the
higher-level scsi driver does something with the resid value. The change
is purely aesthetical and prepares us for the parity implementation.
caused by a different reason):
. #ifndef __FreeBSD__ around check for negative size, FreeBSD size_t is
unsigned
. Disable mirror/parity if interleave size is 0 (i.e., serial concatenation).
(1) The reads are always done from the first n/2 disks.
(2) Each write is done twice, to the "data" disk (in the first half) and
the "mirror" disk (in the second half).
ccdbuffer() now takes an extra argument (struct ccdbuf **) and stores
the pointer to ccdbuf in there. In case of a mirrored write, it
allocates and stores two pointers. The "residual" is also doubled
for mirrored writes so that ccdiodone() can correctly tell when all
the writes are done.