Adds support for probing and initializing bhndb(4) bridge state using
the bhnd_erom API, ensuring that full bridge configuration is available
*prior* to actually attaching and enumerating the bhnd(4) child device,
allowing us to safely allocate bus-level agent/device resources during
bhnd(4) bus enumeration.
- Add a bhnd_erom_probe() method usable by bhndb(4). This is an analogue
to the existing bhnd_erom_probe_static() method, and allows the bhndb
bridge to discover the best available erom parser class prior to newbus
probing of its children.
- Add support for supplying identification hints when probing erom
devices. This is required on early EXTIF-only chipsets, where chip
identification registers are not available.
- Migrate bhndb over to the new bhnd_erom API, using bhnd_core_info
records rather than bridged bhnd(4) device_t references to determine
the bridged chipsets' capability/bridge configuration.
- The bhndb parent (e.g. if_bwn) is now required to supply a hardware
priority table to the bridge. The default table is currently sufficient
for our supported devices.
- Drop the two-pass attach approach we used for compatibility with bhndb(4) in
the bhnd(4) bus drivers, and instead perform bus enumeration immediately,
and allocate bridged per-child bus-level resources during that enumeration.
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D7768
This defines a new bhnd_erom_if API, providing a common interface to device
enumeration on siba(4) and bcma(4) devices, for use both in the bhndb bridge
and SoC early boot contexts, and migrates mips/broadcom over to the new API.
This also replaces the previous adhoc device enumeration support implemented
for mips/broadcom.
Migration of bhndb to the new API will be implemented in a follow-up commit.
- Defined new bhnd_erom_if interface for bhnd(4) device enumeration, along
with bcma(4) and siba(4)-specific implementations.
- Fixed a minor bug in bhndb that logged an error when we attempted to map the
full siba(4) bus space (18000000-17FFFFFF) in the siba EROM parser.
- Reverted use of the resource's start address as the ChipCommon enum_addr in
bhnd_read_chipid(). When called from bhndb, this address is found within the
host address space, resulting in an invalid bridged enum_addr.
- Added support for falling back on standard bus_activate_resource() in
bhnd_bus_generic_activate_resource(), enabling allocation of the bhnd_erom's
bhnd_resource directly from a nexus-attached bhnd(4) device.
- Removed BHND_BUS_GET_CORE_TABLE(); it has been replaced by the erom API.
- Added support for statically initializing bhnd_erom instances, for use prior
to malloc availability. The statically allocated buffer size is verified both
at runtime, and via a compile-time assertion (see BHND_EROM_STATIC_BYTES).
- bhnd_erom classes are registered within a module via a linker set, allowing
mips/broadcom to probe available EROM parser instances without creating a
strong reference to bcma/siba-specific symbols.
- Migrated mips/broadcom to bhnd_erom_if, replacing the previous MIPS-specific
device enumeration implementation.
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D7748
routines available in t4_tom to manage the iSCSI DDP page pod region.
This adds the ability to use multiple DDP page sizes to the iSCSI
driver, among other improvements.
Sponsored by: Chelsio Communications
When fixing this module to build on PC98, I actually broke the build on
ARM64. On PC98 we need to pull in the sources from the MACHINE_CPUARCH
(i386), but on ARM64 we need to use the MACHINE, as MACHINE_CPUARCH is
set to aarch64 instead of just arm64.
- Added bhnd_pmu driver implementations for PMU and PWRCTL chipsets,
derived from Broadcom's ISC-licensed HND code.
- Added bhnd bus-level support for routing per-core clock and resource
power requests to the PMU device.
- Lift ChipCommon support out into the bhnd module, dropping
bhnd_chipc.
Reviewed by: mizhka
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D7492
Where the cloudabi64 kernel can be used to execute 64-bit CloudABI
binaries, this one should be used for 32-bit binaries. Right now it
works on i386 and amd64.
The reason why the old vDSOs were written in C using inline assembly was
purely because they were embedded in the C library directly as static
inline functions. This was practical during development, because it
meant you could invoke system calls without any library dependencies.
The vDSO was simply a copy of these functions.
Now that we require the use of the vDSO, there is no longer any need for
embedding them in C code directly. Rewriting them in assembly has the
advantage that they are closer to ideal (less useless branching, less
assumptions about registers remaining unclobbered by the kernel, etc).
They are also easier to build, as they no longer depend on the C type
information for CloudABI.
Obtained from: https://github.com/NuxiNL/cloudabi
This driver only supports 10Mb Ethernet using PIO (the hardware supports
DMA, but the driver only does PIO). There are not any PCCard adapters
supported by this driver, only ISA cards. In addition, it does not use
bus_space but instead uses bcopy with volatile pointers triggering a
host of warnings. (if_ie.c is one of 3 files always built with
-Wno-error)
Relnotes: yes
The wl(4) driver supports pre-802.11 PCCard wireless adapters that
are slower than 802.11b. They do not work with any of the 802.11
framework and the driver hasn't been reported to actually work in a
long time.
Relnotes: yes
The si(4) driver supported multiport serial adapters for ISA, EISA, and
PCI buses. This driver does not use bus_space, instead it depends on
direct use of the pointer returned by rman_get_virtual(). It is also
still locked by Giant and calls for patch testing to convert it to use
bus_space were unanswered.
Relnotes: yes
- Added a generic bhnd_nvram_parser API, with support for the TLV format
used on WGT634U devices, the standard BCM NVRAM format used on most
modern devices, and the "board text file" format used on some hardware
to supply external NVRAM data at runtime (e.g. via an EFI variable).
- Extended the bhnd_bus_if and bhnd_nvram_if interfaces to support both
string-based and primitive data type variable access, required for
common behavior across both SPROM and NVRAM data sources.
- Extended the existing SPROM implementation to support the new
string-based NVRAM APIs.
- Added an abstract bhnd_nvram driver, implementing the bhnd_nvram_if
atop the bhnd_nvram_parser API.
- Added a CFE-based bhnd_nvram driver to provide read-only access to
NVRAM data on MIPS SoCs, pending implementation of a flash-aware
bhnd_nvram driver.
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D7489
This is a driver for a pre-ATAPI ISA CD-ROM adapter. As noted in
the manpage, this driver is only useful as a backend to cdcontrol to
play audio CDs since it doesn't use DMA, so its data performance is
"abysmal" (and that was true in the mid 90's).
The module works together with ipfw(4) and implemented as its external
action module.
Stateless NAT64 registers external action with name nat64stl. This
keyword should be used to create NAT64 instance and to address this
instance in rules. Stateless NAT64 uses two lookup tables with mapped
IPv4->IPv6 and IPv6->IPv4 addresses to perform translation.
A configuration of instance should looks like this:
1. Create lookup tables:
# ipfw table T46 create type addr valtype ipv6
# ipfw table T64 create type addr valtype ipv4
2. Fill T46 and T64 tables.
3. Add rule to allow neighbor solicitation and advertisement:
# ipfw add allow icmp6 from any to any icmp6types 135,136
4. Create NAT64 instance:
# ipfw nat64stl NAT create table4 T46 table6 T64
5. Add rules that matches the traffic:
# ipfw add nat64stl NAT ip from any to table(T46)
# ipfw add nat64stl NAT ip from table(T64) to 64:ff9b::/96
6. Configure DNS64 for IPv6 clients and add route to 64:ff9b::/96
via NAT64 host.
Stateful NAT64 registers external action with name nat64lsn. The only
one option required to create nat64lsn instance - prefix4. It defines
the pool of IPv4 addresses used for translation.
A configuration of instance should looks like this:
1. Add rule to allow neighbor solicitation and advertisement:
# ipfw add allow icmp6 from any to any icmp6types 135,136
2. Create NAT64 instance:
# ipfw nat64lsn NAT create prefix4 A.B.C.D/28
3. Add rules that matches the traffic:
# ipfw add nat64lsn NAT ip from any to A.B.C.D/28
# ipfw add nat64lsn NAT ip6 from any to 64:ff9b::/96
4. Configure DNS64 for IPv6 clients and add route to 64:ff9b::/96
via NAT64 host.
Obtained from: Yandex LLC
Relnotes: yes
Sponsored by: Yandex LLC
Differential Revision: https://reviews.freebsd.org/D6434
* make interface cloner VNET-aware;
* simplify cloner code and use if_clone_simple();
* migrate LOGIF_LOCK() to rmlock;
* add ipfw_bpf_mtap2() function to pass mbuf to BPF;
* introduce new additional ipfwlog0 pseudo interface. It differs from
ipfw0 by DLT type used in bpfattach. This interface is intended to
used by ipfw modules to dump packets with additional info attached.
Currently pflog format is used. ipfw_bpf_mtap2() function uses second
argument to determine which interface use for dumping. If dlen is equal
to ETHER_HDR_LEN it uses old ipfw0 interface, if dlen is equal to
PFLOG_HDRLEN - ipfwlog0 will be used.
Obtained from: Yandex LLC
Sponsored by: Yandex LLC
The only difference between 3 and 3B is the size of the RJ45 port.
And now we have a uboot port that expect pcduino3.dts to be present.
Reported by: imp
CloudABI executables already provide support for passing in vDSOs. This
functionality is used by the emulator for OS X to inject system call
handlers. On FreeBSD, we could use it to optimize calls to
gettimeofday(), etc.
Though I don't have any plans to optimize any system calls right now,
let's go ahead and already pass in a vDSO. This will allow us to
simplify the executables, as the traditional "syscall" shims can be
removed entirely. It also means that we gain more flexibility with
regards to adding and removing system calls.
Reviewed by: kib
Differential Revision: https://reviews.freebsd.org/D7438
driver. This change significantly increases the overall RX aggregation
ratio for heavily loaded networks handling 10-80 thousand simultaneous
connections.
Remove the turbo LRO code and all references to it which has now been
superceeded by the tcp_lro_queue_mbuf() function.
Tested by: Netflix
Sponsored by: Mellanox Technologies
MFC after: 1 week
f/w for the other devices supported by this driver.
Patch linked in https://reviews.freebsd.org/D6967 but not actually
a part of the review.
Obtained from DragonflyBSD.
Submitted by: Kevin Bowling <kev009@kev009.com>
MFC after: 2 weeks
Relnotes: yes
Chelsio NICs are a bit unique compared to some other NICs in that they
expose different functionality on different physical functions. In
particular, PF4 is used to manage the NIC interfaces ('t4nex' and 't5nex').
However, PF4 is not able to create VF devices. Instead, VFs are only
supported by physical functions 0 through 3. This commit adds 't4iov'
and 't5iov' drivers that attach to PF0-3.
One extra wrinkle is that the iov devices cannot enable SR-IOV until the
firwmare has been initialized by the main PF4 driver. To handle this
case, a new t4_if kobj interface has been added to permit cross-calls
between the PF drivers. The PF4 driver notifies sibling drivers when it
is fully attached. It also requests sibling drivers to detach before it
detaches. Sibling drivers query the PF4 driver during their attach
routine to see if it is attached. If not, the sibling drivers defer
their attach actions until the PF4 driver informs them it is attached.
VF devices are associated with a single port on the NIC. VF devices
created from PF0 are associated with the first port on the NIC, VFs
from PF1 are associated with the second port, etc. VF devices can
only be created from a PF device that has an associated port. Thus,
on a 2-port card, VFs are only supported on PF0 and PF1.
Reviewed by: np (earlier versions)
MFC after: 1 month
Sponsored by: Chelsio Communications
* Add acpi_if.h to the SRC list in the uart module
* Only include new acpi headers when they are needed
Obtained from: ABT Systems Ltd
MFC after: 1 month
Sponsored by: The FreeBSD Foundation
as defined in RFC 6296. The module works together with ipfw(4) and
implemented as its external action module. When it is loaded, it registers
as eaction and can be used in rules. The usage pattern is similar to
ipfw_nat(4). All matched by rule traffic goes to the NPT module.
Reviewed by: hrs
Obtained from: Yandex LLC
MFC after: 1 month
Relnotes: yes
Sponsored by: Yandex LLC
Differential Revision: https://reviews.freebsd.org/D6420
Instead of global variable, vmbus version is accessed through
a vmbus DEVMETHOD now.
MFC after: 1 week
Sponsored by: Microsoft OSTC
Differential Revision: https://reviews.freebsd.org/D6953