Commit Graph

9995 Commits

Author SHA1 Message Date
Bruce Evans
16638b5585 Optimized by eliminating the special case for 0.67434 <= |x| < pi/4.
A single polynomial approximation for tan(x) works in infinite precision
up to |x| < pi/2, but in finite precision, to restrict the accumulated
roundoff error to < 1 ulp, |x| must be restricted to less than about
sqrt(0.5/((1.5+1.5)/3)) ~= 0.707.  We restricted it a bit more to
give a safety margin including some slop for optimizations.  Now that
we use double precision for the calculations, the accumulated roundoff
error is in double-precision ulps so it can easily be made almost 2**29
times smaller than a single-precision ulp.  Near x = pi/4 its maximum
is about 0.5+(1.5+1.5)*x**2/3 ~= 1.117 double-precision ulps.

The minimax polynomial needs to be different to work for the larger
interval.  I didn't increase its degree the old degree is just large
enough to keep the final error less than 1 ulp and increasing the
degree would be a pessimization.  The maximum error is now ~0.80
ulps instead of ~0.53 ulps.

The speedup from this optimization for uniformly distributed args in
[-2pi, 2pi] is 28-43% on athlons, depending on how badly gcc selected
and scheduled the instructions in the old version.  The old version
has some int-to-float conversions that are apparently difficult to schedule
well, but gcc-3.3 somehow did everything ~10 cycles or ~10% faster than
gcc-3.4, with the difference especially large on AXPs.  On A64s, the
problem seems to be related to documented penalties for moving single
precision data to undead xmm registers.  With this version, the speed
is cycles is almost independent of the athlon and gcc version despite
the large differences in instruction selection to use the FPU on AXPs
and SSE on A64s.
2005-11-24 02:04:26 +00:00
Ruslan Ermilov
4ca0505435 Fix prototype. 2005-11-23 20:34:37 +00:00
Ruslan Ermilov
8b79908889 Fix prototype. 2005-11-23 20:26:58 +00:00
Ruslan Ermilov
79be508c8f Fix prototypes. 2005-11-23 16:44:23 +00:00
Ruslan Ermilov
8ae7a845d5 There's no longer^Wyet <sys/capability.h>. 2005-11-23 16:24:39 +00:00
Ruslan Ermilov
49e5b98f5a Fix inet6_opt_get_val() prototype. 2005-11-23 16:07:54 +00:00
Ruslan Ermilov
5306fb2d0c Make SYNOPSIS compile. 2005-11-23 15:55:38 +00:00
Ruslan Ermilov
b0faeb2d42 Make SYNOPSIS compile after imp@'s changes. 2005-11-23 15:44:42 +00:00
Ruslan Ermilov
16a97b8591 Make SYNOPSIS compile. 2005-11-23 15:41:36 +00:00
Bruce Evans
94a5f9be99 Use only double precision for "kernel" tanf (except for returning float).
This is a minor interface change.  The function is renamed from
__kernel_tanf() to __kernel_tandf() so that misues of it will cause
link errors and not crashes.

This version is a routine translation with no special optimizations
for accuracy or efficiency.  It gives an unimportant increase in
accuracy, from ~0.9 ulps to 0.5285 ulps.  Almost all of the error is
from the minimax polynomial (~0.03 ulps and the final rounding step
(< 0.5 ulps).  It gives strange differences in efficiency in the -5
to +10% range, with -O1 fairly consistently becoming faster and -O2
slower on AXP and A64 with gcc-3.3 and gcc-3.4.
2005-11-23 14:27:56 +00:00
Ruslan Ermilov
c48648d2c1 Add missing includes. 2005-11-23 10:49:07 +00:00
Bruce Evans
01231dd04c Simplified setiing up args for __kernel_rem_pio2(). We already have x
with a 24-bit fraction, so we don't need a loop to split it into up to
3 terms with 24-bit fractions.
2005-11-23 03:03:09 +00:00
Bruce Evans
33f8f56e09 Quick fix for stack buffer overrun in rev.1.13. Oops. The prec == 1
arg to __kernel_rem_pio2() gives 53-bit (double) precision, not single
precision and/or the array dimension like I thought.  prec == 2 is
used in e_rem_pio2.c for double precision although it is documented
to be for 64-bit (extended) precision, and I just reduced it by 1
thinking that this would give the value suitable for 24-bit (float)
precision.  Reducing it 1 more to the documented value for float
precision doesn't actually work (it gives errors of ~0.75 ulps in the
reduced arg, but errors of much less than 0.5 ulps are needed; the bug
seems to be in kernel_rem_pio2.c).  Keep using a value 1 larger than
the documented value but supply an array large enough hold the extra
unused result from this.

The bug can also be fixed quickly by increasing init_jk[0] in
k_rem_pio2.c from 2 to 3.  This gives behaviour identical to using
prec == 1 except it doesn't create the extra result.  It isn't clear
how the precision bug affects higher precisions.  113-bit (quad) is
the largest precision, so there is no way to use a large precision
to fix it.
2005-11-23 02:06:06 +00:00
Ruslan Ermilov
33d6b9fbe6 Tidy up markup and fix two bugs. 2005-11-21 17:18:34 +00:00
Bruce Evans
4ce5120952 Mess up the "kernel" float trig function .c files with ifdefs so that
they can be #included in other .c files to give inline functions, and
use them to inline the functions in most callers (not in e_lgammaf_r.c).
__kernel_tanf() is too large and complicated for gcc to inline very well.

An athlons, this gives a speed increase under favourable pipeline
conditions of about 10% overall (larger for AXP, smaller for A64).
E.g., on AXP, sinf() on uniformly distributed args in [-2Pi, 2Pi]
now takes 30-56 cycles; it used to take 45-61 cycles; hardware fsin
takes 65-129.
2005-11-21 04:57:12 +00:00
Bruce Evans
58652034e8 Use double precision to simplify and optimize a long division.
On athlons, this gives a speedup of 10-20% for tanf() on uniformly
distributed args in [-2Pi, 2Pi].  (It only directly applies for 43%
of the args and gives a 16-20% speedup for these (more for AXP than
A64) and this gives an overall speedup of 10-12% which is all that it
should; however, it gives an overall speedup of 17-20% with gcc-3.3
on AXP-A64 by mysteriously effected cases where it isn't executed.)

I originally intended to use double precision for all internals of
float trig functions and will probably still do this, but benchmarking
showed that converting to double precision and back is a pessimization
in cases where a simple float precision calculation works, so it may
be optimal to switch precisions only when using extra precision is
much simpler.
2005-11-21 00:38:21 +00:00
Bruce Evans
23f6483e0a Restored a cleanup in rev.1.9 tthat was lost in rev.1.10. 2005-11-20 20:17:04 +00:00
Simon L. B. Nielsen
71dac3fb8f Do not explicitly state how many bytes an argument list can be in the
description of E2BIG, since it's now larger on some platforms.

MFC after:	3 days
2005-11-19 11:30:55 +00:00
Marcel Moolenaar
49fa07a087 o Include <sys/time.h>
o  Make this ILP32/LP64 clean: cast pointers to long
o  Code conditional upon DEBUG must also be conditional
   upon _LIBC_R_
2005-11-19 04:47:06 +00:00
Marcel Moolenaar
dc2e8ca41b o Include <string.h>
o  Make this ILP32/LP64 clean: cast pointers to long.
2005-11-19 04:45:15 +00:00
Marcel Moolenaar
40edb45e59 Fix typo: s/_LIBC_R/_LIBC_R_/ 2005-11-19 04:43:29 +00:00
Bruce Evans
8299eb7e3e Moved all the optimizations for |x| <= 9pi/2 from
__ieee754_rem_pio2f() to its 3 callers and manually inline them.

On Athlons, with favourable compiler flags and optimizations and
favourable pipeline conditions, this gives a speedup of 30-40 cycles
for cosf(), sinf() and tanf() on the range pi/4 < |x| <= 9pi/4, so
thes functions are now signifcantly faster than the hardware trig
functions in many cases.  E.g., in a benchmark with uniformly distributed
x in [-2pi, 2pi], A64 hardware fcos took 72-129 cycles and cosf() took
37-55 cycles.  Out-of-order execution is needed to get both of these
times.  The optimizations in this commit apparently work more by
removing 1 serialization point than by reducing latency.
2005-11-19 02:38:27 +00:00
Andre Oppermann
f6232df7a4 Document CLOCK_UPTIME which returns the current uptime in SI seconds.
At the moment it is just an alias for CLOCK_MONOTONIC which reports
the same number.

Sponsored by:	TCP/IP Optimization Fundraise 2005
2005-11-18 17:13:22 +00:00
Ruslan Ermilov
6b84cd5819 Fix markup, grammar and spelling. 2005-11-18 14:21:28 +00:00
Ruslan Ermilov
ca5137742a Fix up markup. 2005-11-18 11:54:14 +00:00
Ruslan Ermilov
5507a2aed5 Fix up markup etc. in recently born manpage. 2005-11-18 11:53:23 +00:00
Bruce Evans
3f1a8f462c Removed an unused declaration which was so old that it wasn't a prototype
and thus just broke building at any nonzero WARNS level.

Fixed nearby style bugs.
2005-11-18 05:03:12 +00:00
Ruslan Ermilov
110e1704d3 -mdoc sweep. 2005-11-17 13:00:00 +00:00
Bruce Evans
75ff209cbb Minor cleanups:
s_cosf.c and s_sinf.c:
Use a non-bogus magic constant for the threshold of pi/4.  It was 2 ulps
smaller than pi/4 rounded down, but its value is not critical so it should
be the result of natural rounding.

s_cosf.c and s_tanf.c:
Use a literal 0.0 instead of an unnecessary variable initialized to
[(float)]0.0.  Let the function prototype convert to 0.0F.

Improved wording in some comments.

Attempted to improve indentation of comments.
2005-11-17 03:53:22 +00:00
Bruce Evans
123e5d3dae Rearranged the the optimizations for special cases to reduce the average
number of branches.

Use a non-bogus magic constant for the threshold of pi/4.  It was 2 ulps
smaller than pi/4 rounded down, but its value is not critical so it should
be the result of natural rounding.  Use "<=" comparisons with rounded-
down thresholds for all small multiples of pi/4.

Cleaned up previous commit:
- use static const variables instead of expressions for multiples of pi/2
  to ensure that they are evaluated at compile time.  gcc currently
  evaluates them at compile time but C99 compilers are not required
  to do so.  We want compile time evaluation for optimization and don't
  care about side effects.
- use M_PI_2 instead of a magic constant for pi/2.  We need magic constants
  related to pi/2 elsewhere but not here since we just want pi/2 rounded
  to double and even prefer it to be rounded in the default rounding mode.
  We can depend on the cmpiler being C99ish enough to round M_PI_2 correctly
  just as much as we depended on it handling hex constants correctly.  This
  also fixes a harmless rounding error in the hex constant.
- keep using expressions n*<value for pi/2> in the initializers for the
  static const variables.  2*M_PI_2 and 4*M_PI_2 are obviously rounded in
  the same way as the corresponding infinite precision expressions for
  multiples of pi/2, and 3*M_PI_2 happens to be rounded like this, so we
  don't need magic constants for the multiples.
- fixed and/or updated some comments.
2005-11-17 02:20:04 +00:00
Hajimu UMEMOTO
4a58c5f5a3 The KAME's getipnodebyaddr() code honor the MULTI_PTRS_ARE_ALIASES
define also, but res_config.h was not included into libc/net/name6.c.
So getipnodebyaddr() ignored the multiple PTRs.

PR:		kern/88241
Submitted by:	Dan Lukes <dan__at__obluda.cz>
MFC after:	3 days
2005-11-15 03:40:15 +00:00
Robert Watson
be2cb7fae9 Add symlinks for kvm access methods for memstat(3).
MFC after:	3 days
2005-11-13 13:42:03 +00:00
Bruce Evans
25efbfb212 Fixed some magic numbers.
The threshold for not being tiny was too small.  Use the usual 2**-12
threshold.  This change is not just an optimization, since the general
code that we fell into has accuracy problems even for tiny x.  Avoiding
it fixes 2*1366 args with errors of more than 1 ulp, with a maximum
error of 1.167 ulps.

The magic number 22 is log(DBL_EPSILON)/2 plus slop.  This is bogus
for float precision.  Use 9 (~log(FLT_EPSILON)/2 plus less slop than
for double precision).  The code for handling the interval
[2**-28, 9_was_22] has accuracy problems even for [9, 22], so this
change happens to fix errors of more than 1 ulp in about 2*17000
cases.  It leaves such errors in about 2*1074000 cases, with a max
error of 1.242 ulps.

The threshold for switching from returning exp(x)/2 to returning
exp(x/2)^2/2 was a little smaller than necessary.  As for coshf(),
This was not quite harmless since the exp(x/2)^2/2 case is inaccurate,
and fixing it avoids accuracy problems in 2*6 cases, leaving problems
in 2*19997 cases.

Fixed naming errors in pseudo-code in comments.
2005-11-13 00:41:46 +00:00
Bruce Evans
c24b7984fc Fixed some magic numbers.
The threshold for not being tiny was confusing and too small.  Use the
usual 2**-12 threshold and simplify the algorithm slightly so that
this threshold works (now use the threshold for sinhf() instead of one
for 1+expm1()).  This is just a small optimization.

The magic number 22 is log(DBL_EPSILON)/2 plus slop.  This is bogus
for float precision.  Use 9 (~log(FLT_EPSILON)/2 plus less slop than
for double precision).

The threshold for switching from returning exp(x)/2 to returning
exp(x/2)^2/2 was a little smaller than necessary.  This was not quite
harmless since the exp(x/2)^2/2 case is inaccurate.  Fixing it happens
to avoid accuracy problems for 2*6 of the 2*151 args that were handled
by the exp(x)/2 case.  This leaves accuracy problems for about 2*19997
args near the overflow threshold (~89); the maximum error there is
2.5029 ulps.

There are also accuracy probles for args in +-[0.5*ln2, 9] -- 2*188885
args with errors of more than 1 ulp, with a maximum error of 1.384 ulps.

Fixed a syntax error and naming errors in pseudo-code in comments.
2005-11-13 00:08:23 +00:00
Bruce Evans
e96c4fd9f7 Imoproved comments for the minimax polynomial.
Removed an unused variable.

Fixed some wrong comments and some nearby misformatting.
2005-11-12 20:06:04 +00:00
Bruce Evans
6e10a447f8 Tweaked the minimax polynomial and improved its comments. 2005-11-12 19:56:35 +00:00
Bruce Evans
787d6d77d5 Improved comments for the minimax polynomial. 2005-11-12 19:54:45 +00:00
Bruce Evans
d4a74de9fc As for the float trig functions, use a minimax polynomial that is
specialized for float precision.  The new polynomial has degree 8
instead of 14, and a maximum error of 2**-34.34 (absolute) instead of
2**-30.66.  This doesn't affect the final error significantly; the
maximum error was and is about 0.8879 ulps on amd64 -01.

The fdlibm expf() is not used on i386's (the "optimized" asm version
is used), but probably should be since it was already significantly
faster than the asm version on athlons.  The asm version has the
advantage of being more accurate, so keep using it for now.
2005-11-12 18:20:09 +00:00
Daniel Eischen
f4fb3299fa Fix a stub function so that is has the correct number of
arguments.  While I'm here, correct a couple of [tab] alignments.

Submitted by:	bland
2005-11-12 16:00:29 +00:00
David Xu
ec0fd3f855 add continued status. 2005-11-12 01:37:03 +00:00
David Xu
b1e515a3f4 Insert missing copyright headers. 2005-11-12 01:19:05 +00:00
David Xu
b71ec5beb4 Only signo should be marked with .Fa. 2005-11-11 14:52:06 +00:00
Xin LI
16902e8a3f Fix plural. 2005-11-11 08:00:44 +00:00
David Xu
d971c2eec2 Fix plural. 2005-11-11 07:50:51 +00:00
David Xu
9463da7fe5 Fix copy-paste issue. 2005-11-11 07:50:09 +00:00
David Xu
bb5eebe6f2 Add POSIX timer manuals. 2005-11-11 07:48:38 +00:00
David Xu
a0e82eba5d Add descriptions about signal queue. 2005-11-11 05:40:39 +00:00
David Xu
c05e95d4ff Er, highlight function wait(). 2005-11-11 05:38:40 +00:00
David Xu
4c1a973e6e Add notes about queued SIGCHLD. 2005-11-11 05:30:48 +00:00
David Xu
e84ece6bef Add manuals for sigqueue, sigtimedwait, sigwaitinfo. 2005-11-11 03:13:25 +00:00