that crept in recently. GCC will optimize the divides and multiplies for us.
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
MFC after: 1 day
memory while mapping a virtual address to a physical address.
This allows us to work with virtual addresses for page tables,
provided it doesn't cause infinite recursion. Currently all
page tables are direct mapped.
userland. If someone wants to implement a backup p_siglist in the kernel
for compatability and to export one could. For now, just tell KVM to hand
an empty signal set off to the userland.
after adding __FBSDID().
Garbage-collected kvm_readswap(). This was once used by kvm_uread(), but
kvm_uread() now just reads /proc/<pid>/mem and procfs hopefully handles
swapped out pages.
next step is to allow > 1 to be allocated per process. This would give
multi-processor threads. (when the rest of the infrastructure is
in place)
While doing this I noticed libkvm and sys/kern/kern_proc.c:fill_kinfo_proc
are diverging more than they should.. corrective action needed soon.
called <machine/_types.h>.
o <machine/ansi.h> will continue to live so it can define MD clock
macros, which are only MD because of gratuitous differences between
architectures.
o Change all headers to make use of this. This mainly involves
changing:
#ifdef _BSD_FOO_T_
typedef _BSD_FOO_T_ foo_t;
#undef _BSD_FOO_T_
#endif
to:
#ifndef _FOO_T_DECLARED
typedef __foo_t foo_t;
#define _FOO_T_DECLARED
#endif
Concept by: bde
Reviewed by: jake, obrien
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
processes match the given criteria. Since revision 1.60 of malloc.c,
malloc() and friends return an invalid pointer when given a size of 0.
kvm_getprocs() uses sysctl() with a NULL oldp argument to get an
initial size, but does not check whether it's 0 before passing it to
realloc() (via _kvm_realloc()). Before the aforementioned malloc()
change, this resulted in a minimal allocation made and a valid poitner
returned, but now results in an invalid, but non-NULL, pointer being
returned. When this is passed to sysctl(), the latter returns EFAULT
(as it should).
I'll know as soon as I re-import it and compile it.. :-)
There is no longer a 'pri' strict in the proc struct.
the fields are scattered between the ksegrp and thread in question.
Make a slight change so that libkvm reaches the main thread via the
linked list, rather than assuming it is in the proc structure. Both
conditions are true in -current but only the first will be true in
the KSE M3 world.
argument to kvm_open() and kvm_openfiles() as unused.
BSD didn't read swap since kvm.c CSRG revision 5.21 (u-area is pageable
under new VM. no need to read from swap.)
The old !NEWVM code was removed in CSRG revision 5.23 (~ten years ago).
what broke ps on ia64. It probably also broke on alpha, but the fallback
method of using lseek/read on /proc/*/mem to read ps_strings seems to
work there. It doesn't on ia64 yet.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
real uid, saved uid, real gid, and saved gid to ucred, as well as the
pcred->pc_uidinfo, which was associated with the real uid, only rename
it to cr_ruidinfo so as not to conflict with cr_uidinfo, which
corresponds to the effective uid.
o Remove p_cred from struct proc; add p_ucred to struct proc, replacing
original macro that pointed.
p->p_ucred to p->p_cred->pc_ucred.
o Universally update code so that it makes use of ucred instead of pcred,
p->p_ucred instead of p->p_pcred, cr_ruidinfo instead of p_uidinfo,
cr_{r,sv}{u,g}id instead of p_*, etc.
o Remove pcred0 and its initialization from init_main.c; initialize
cr_ruidinfo there.
o Restruction many credential modification chunks to always crdup while
we figure out locking and optimizations; generally speaking, this
means moving to a structure like this:
newcred = crdup(oldcred);
...
p->p_ucred = newcred;
crfree(oldcred);
It's not race-free, but better than nothing. There are also races
in sys_process.c, all inter-process authorization, fork, exec, and
exit.
o Remove sigio->sio_ruid since sigio->sio_ucred now contains the ruid;
remove comments indicating that the old arrangement was a problem.
o Restructure exec1() a little to use newcred/oldcred arrangement, and
use improved uid management primitives.
o Clean up exit1() so as to do less work in credential cleanup due to
pcred removal.
o Clean up fork1() so as to do less work in credential cleanup and
allocation.
o Clean up ktrcanset() to take into account changes, and move to using
suser_xxx() instead of performing a direct uid==0 comparision.
o Improve commenting in various kern_prot.c credential modification
calls to better document current behavior. In a couple of places,
current behavior is a little questionable and we need to check
POSIX.1 to make sure it's "right". More commenting work still
remains to be done.
o Update credential management calls, such as crfree(), to take into
account new ruidinfo reference.
o Modify or add the following uid and gid helper routines:
change_euid()
change_egid()
change_ruid()
change_rgid()
change_svuid()
change_svgid()
In each case, the call now acts on a credential not a process, and as
such no longer requires more complicated process locking/etc. They
now assume the caller will do any necessary allocation of an
exclusive credential reference. Each is commented to document its
reference requirements.
o CANSIGIO() is simplified to require only credentials, not processes
and pcreds.
o Remove lots of (p_pcred==NULL) checks.
o Add an XXX to authorization code in nfs_lock.c, since it's
questionable, and needs to be considered carefully.
o Simplify posix4 authorization code to require only credentials, not
processes and pcreds. Note that this authorization, as well as
CANSIGIO(), needs to be updated to use the p_cansignal() and
p_cansched() centralized authorization routines, as they currently
do not take into account some desirable restrictions that are handled
by the centralized routines, as well as being inconsistent with other
similar authorization instances.
o Update libkvm to take these changes into account.
Obtained from: TrustedBSD Project
Reviewed by: green, bde, jhb, freebsd-arch, freebsd-audit
sysctls exporting swap information. When running on a live kernel,
the sysctl's will now be used instead of kvm_read, allowing consumers of
this interface to run without privilege (setgid kmem). Retain the
ability to run on coredumps, or on a kernel using kmem if explicitly
pointed at one.
A side effect of this change is that kvm_getswapinfo() is faster now in
the general case. If the SWIF_DUMP_TREE flag is given (pstat -ss does
this), the radix tree walker, which still uses kvm_read in any case, is
invoked, and therefore does require privilege.
Submitted by: Thomas Moestl <tmoestl@gmx.net>
Reviewed by: freebsd-audit
no longer contains kernel specific data structures, but rather
only scalar values and structures that are already part of the
kernel/user interface, specifically rusage and rtprio. It no
longer contains proc, session, pcred, ucred, procsig, vmspace,
pstats, mtx, sigiolst, klist, callout, pasleep, or mdproc. If
any of these changed in size, ps, w, fstat, gcore, systat, and
top would all stop working. The new structure has over 200 bytes
of unassigned space for future values to be added, yet is nearly
100 bytes smaller per entry than the structure that it replaced.
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.
and is module aware. Yes, this means that kvm_nlist(3) will find symbols
in loaded modules. The emulation of the nlist struct is pretty crude but
seems to work well enough for all the users in the tree that I found.
This fixes some nasty procfs problems for SMP, makes ps(1) run much faster,
and makes ps(1) even less dependent on /proc which will aid chroot and
jails alike.
To disable this facility and revert to previous behaviour:
sysctl -w kern.ps_arg_cache_limit=0
For full details see the current@FreeBSD.org mail-archives.