a GetAllNext response. Otherwise, we won't unswizzle
it correctly. This was found on linux/PPC.
This mandated creating another inline: isp_get_gan_response.
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
If we get a completion status of RQCS_QUEUE_FULL, it means
that the internal queues are full. Other QLogic boards set
the QFULL SCSI status. But *nooooooooooo*, not the 2300.
MFC after: 1 day
appropriate cache flush that provides MEMORY_BARRIER in between handoffs
between host && RISC processor for the shared memory request/response
queues.
Submitted by: dfr@nlsystems.com
to see if there's an interrupt (avoids PCI parity errors
which can occur on the 2312 if you access some registers
from the host at the same time the RISC on the 2312 is
C accessing them).
MFC after: 1 day
per-command component that we *don't* try and pass thru CAM. CAM just
is too risky and too much of a pain- structures get copied, but not
all info of interest can be considered safely transported thru all
consumers (including user space) from the incoming ATIO to the outgoing
CTIO- it's just much safer to have a buddy structure, identified by the
command's tag which *does* make it thru safely.
Pay attention to link speed and report 200MB/s xfer speed for a
23XX card in 2GPs mode.
MFC after: 1 week
once so there isn't a window with the ones for the 23XX cards being wrong.
When being verbose, print out some more FC NVRAM values (like framesize).
MFC after: 1 week
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
SIM (as is true for the 1280 and the 12160), then I have to have separate
flags && status for *both* busses. *Whap*.
Implement condition variables for coordination with some target mode
events. It's nice to use these and not panic in obscure little places
in the kernel like 'propagate_priority' just because we went to sleep
holding a mutex, or some other absurd thing.
Remove some bogus ISP_UNLOCK calls. *Whap*.
No longer require that somebody do a lun enable on the wildcard device
to enable target mode. They are, in fact, orthogonal. A wildcard open
is a statement that somebody upstream is willing to accept commands which
are otherwise unrouteable. Now, for QLogic regular SCSI target mode, this
won't matter for a damn because we'll never see ATIOs for luns we haven't
enabled (are listening for, if you will). But for SCCLUN fibre channel
SCSI, we get all kinds of ATIOs. We can either reflect them back here
with minimal info (which is isp_target.c:isp_endcmd() is for), or the
wildcard device (nominally targbh) can handle them.
Do further checking against firmware attributes to see whether we can,
in fact, support target mode in Fibre Channel. For now, require SCCLUN
f/w to supoprt FC target mode.
This is an awful lot of change, but target mode *still* isn't quite right.
MFC after: 4 weeks
applies to. Do more bus # foo things.
Acknowledge Immediate Notifies right away prior to throwing events upstream
(where they're currently being ignored, *groan*)
Capture ASYNC_LIP_F8 as with ASYNC_LIP_OCCURRED. Don't percolate them
upstream as if they were BUS RESETS- they're not.
and cv_wait for mailbox commands to complete if we start them from
here.
Fix residuals for target mode such that we only check the residual and
set it in the CTIO if this is the last CTIO (when we're sending status).
MFC after: 4 weeks
SIM (as is true for the 1280 and the 12160), then I have to have separate
flags && status for *both* busses. *Whap*.
Implement condition variables for coordination with some target mode
events. It's nice to use these and not panic in obscure little places
in the kernel like 'propagate_priority' just because we went to sleep
holding a mutex, or some other absurd thing.
MFC after: 4 weeks
luns) firmware for the Fibre Channel cards.
We used to assume that if we didn't download firmware, we couldn't know
what the firmware capability with respect to SCCLUNs is- and it's important
because the lun field changes in the request queue entry based upon which
firmware it is.
At any rate, we *do* get back firmware attributes in mailbox register 6
when we do ABOUT FIRMWARE for all 2200/2300 cards- and for 2100 cards
with at least 1.17.0 firmware. So- we now assume non-SCCLUN behaviour
for 2100 cards with firmware < 1.17.0- and we check the firmware attributes
for other cards (loaded firmware or not).
This also allows us to get rid of the crappy test of isp_maxluns > 16-
we simply can check firmware attributes for SCCLUN behaviour.
This required an 'oops' fix to the outgoing mailbox count field for
ABOUT FIRMWARE for FC cards.
Also- while here, hardwire firmware revisions for loaded code for SBus
cards. Apparently the 1.35 or 1.37 f/w we've been loading into isp1000
just doesn't report firmware revisions out to mailbox regs 1, 2 and 3
like everyone else. Grumble. Not that this fix hardly matters for FreeBSD.
MFC after: 4 weeks
some reworking (and consequent cleanup) of the interrupt service code.
Also begin to start a cleanup of target mode support that will (eventually)
not require more inforamtion routed with the ATIO to come back with the
CTIO other than tag.
MFC after: 4 weeks
that do not have valid NVRAM. In particular, we were leaving
a retry count set (to retry selection timeouts) when thats
not really what we want. Do some constant string additions
so that LOGDEBUG0 info is useful across all cards.
MFC after: 2 weeks
either what's in NVRAM or what the safe defaults would be if we lack NVRAM.
Then we rename cur_XXXX to actv_XXXX (these are the currently active settings)
and the dev_XXX settings to goal_XXXX (these are the settings which we want
cur_XXXX to converge to).
This probably isn't entirely final as yet- but it's a lot closer to now
being what it should be, including allowing camcontrol to actually set
specific settings.
either what's in NVRAM or what the safe defaults would be if we lack NVRAM.
Then we rename cur_XXXX to actv_XXXX (these are the currently active settings)
and the dev_XXX settings to goal_XXXX (these are the settings which we want
cur_XXXX to converge to).
Roll core minor.
either what's in NVRAM or what the safe defaults would be if we lack NVRAM.
Then we rename cur_XXXX to actv_XXXX (these are the currently active settings)
and the dev_XXX settings to goal_XXXX (these are the settings which we want
cur_XXXX to converge to).
Correctly reintroduce loop_seen_once semantics- that is, if we've never
seen good link, start bouncing commands with CAM_SEL_TIMEOUT. But we
have to be careful to have let ourselves try (in isp_kthread) to check
for loop up at least once.
PR: 28992
MFC after: 1 week
We originally had it such that if the connection topology was FL-loop
(public loop), we never looked at any local loop addresses. The reason
for not doing that was fear or concern that we'd see the same local
loop disks reflected from the name server and we'd attach them twice.
However, when I recently hooked up a JBOD and a system to an ANCOR SA-8
switch, the disks did *not* show up on the fabric. So at least the
ANCOR is screening those disks from appearing on the fabric. Now, it's
possible this is a 'feature' of the ANCOR. When I get a chance, I'll
check the Brocade (it's hard to do this on a low budget).
In any case, if they *do* also show up on the fabric, we should
simply elect to not log into them because we already have an
entry for the local loop. There is relatively unexercised code
just for this case.
MFC after: 2 weeks
For fibre channel, start going for the gusto and using AC_FOUND_DEVICE
and AC_LOST_DEVICE calls to xpt_async when devices appear and disappear
as the loop or fabric changes.
ISPASYNC_FW_CRASH is the async event code where the platform layer
deals with a firmware crash.
some of the RIO (reduced interrupt operation) stuff. Add 64 bit
data list (DSD type 1) and arbitrary data list (DSD type 2)
data structure defines.
Add macros that parameterize usage of the Request/Response in/out
queue pointers. When we finish 2300 support, different registers
will be accessed for the 2300.
part of the PCI block for the 2300- not software convention usage
of the mailbox registers- so we macrosize in/out pointer usage.
Only report that a LIP destroyed commands if it actually destroyed
commands. Get the chan/tgt/lun order correct. Fix a longstanding
stupid bug that caused us to try and issue a command with a tag on
Channel B because we were checking the tagged capability for the
target against Channel A.
A firmware crash is now vectored out to platform specific code
as an async event.
Some minor formatting tweaks.
554: passing arg 4 of `resource_string_value' from incompatible pointer type
576: passing arg 4 of `resource_string_value' from incompatible pointer type
593: passing arg 4 of `resource_string_value' from incompatible pointer type
commands that complete (with no apparent error) after
we receive a LIP. This has been observed mostly on
Local Loop topologies. To be safe, let's just mark
all active commands as dead if we get a LIP and we're
on a private or public loop.
MFC after: 4 weeks
----
Make a device for each ISP- really usable only with devfs and add an ioctl
entry point (this can be used to (re)set debug levels, reset the HBA,
rescan the fabric, issue lips, etc).
----
Add in a kernel thread for Fibre Channel cards. The purpose of this
thread is to be woken up to clean up after Fibre Channel events
block things. Basically, any FC event that casts doubt on the
location or identify of FC devices blocks the queues. When, and
if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED
async event, we activate the kthread which will then, in full thread
context, re-evaluate the local loop and/or the fabric. When it's
satisfied that things are stable, it can then release the blocked
queues and let commands flow again.
The prior mechanism was a lazy evaluation. That is, the next command
to come down the pipe after change events would pay the full price
for re-evaluation. And if this was done off of a softcall, it really
could hang up the system.
These changes brings the FreeBSD port more in line with the Solaris,
Linux and NetBSD ports. It also, more importantly, gets us being
more proactive about topology changes which could then be reflected
upwards to CAM so that the periph driver can be informed sooner
rather than later when things arrive or depart.
---
Add in the (correct) usage of locking macros- we now have lock transition
macros which allow us to transition from holding the CAM lock (Giant)
and grabbing the softc lock and vice versa. Switch over to having this
HBA do real locking. Some folks claim this won't be a win. They're right.
But you have to start somewhere, and this will begin to teach us how
to DTRT for HBAs, etc.
--
Start putting in prototype 2300 support. Add back in LIP
and Loop Reset as async events that each platform will handle.
Add in another int_bogus instrumentation point.
Do some more substantial target mode cleanups.
MFC after: 8 weeks