In its stead use the Solaris / illumos approach of emulating '-' (dash)
in probe names with '__' (two consecutive underscores).
Reviewed by: markj
MFC after: 3 weeks
option, unbreak the lock tracing release semantic by embedding
calls to LOCKSTAT_PROFILE_RELEASE_LOCK() direclty in the inlined
version of the releasing functions for mutex, rwlock and sxlock.
Failing to do so skips the lockstat_probe_func invokation for
unlocking.
- As part of the LOCKSTAT support is inlined in mutex operation, for
kernel compiled without lock debugging options, potentially every
consumer must be compiled including opt_kdtrace.h.
Fix this by moving KDTRACE_HOOKS into opt_global.h and remove the
dependency by opt_kdtrace.h for all files, as now only KDTRACE_FRAMES
is linked there and it is only used as a compile-time stub [0].
[0] immediately shows some new bug as DTRACE-derived support for debug
in sfxge is broken and it was never really tested. As it was not
including correctly opt_kdtrace.h before it was never enabled so it
was kept broken for a while. Fix this by using a protection stub,
leaving sfxge driver authors the responsibility for fixing it
appropriately [1].
Sponsored by: EMC / Isilon storage division
Discussed with: rstone
[0] Reported by: rstone
[1] Discussed with: philip
the mac framework. It is needed when priv_check_cred(9) is called from
the mac callback, e.g. in the mac_portacl(4).
Reported by: az
Reviewed by: rwatson
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
Approved by: re (gjb)
use '-' in probe names, matching the probe names in Solaris.[1]
Add userland SDT probes definitions to sys/sdt.h.
Sponsored by: The FreeBSD Foundation
Discussed with: rwaston [1]
might arise from WITNESS not understanding its locking protocol, which
should be deadlock-free. Currently these warnings generally don't occur,
but as object locking is pushed into policies for some object types, they
would otherwise occur more often.
Obtained from: TrustedBSD Project
count of the number of registered policies.
Rather than unconditionally locking sockets before passing them into MAC,
lock them in the MAC entry points only if mac_policy_count is non-zero.
This avoids locking overhead for a number of socket system calls when no
policies are registered, eliminating measurable overhead for the MAC
Framework for the socket subsystem when there are no active policies.
Possibly socket locks should be acquired by policies if they are required
for socket labels, which would further avoid locking overhead when there
are policies but they don't require labeling of sockets, or possibly
don't even implement socket controls.
Obtained from: TrustedBSD Project
- Add rm_init_flags() and accept extended options only for that variation.
- Add a flags space specifically for rm_init_flags(), rather than borrowing
the lock_init() flag space.
- Define flag RM_RECURSE to use instead of LO_RECURSABLE.
- Define flag RM_NOWITNESS to allow an rmlock to be exempt from WITNESS
checking; this wasn't possible previously as rm_init() always passed
LO_WITNESS when initializing an rmlock's struct lock.
- Add RM_SYSINIT_FLAGS().
- Rename embedded mutex in rmlocks to make it more obvious what it is.
- Update consumers.
- Update man page.
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
naming by renaming certain "proc" entry points to "cred" entry points,
reflecting their manipulation of credentials. For some entry points,
the process was passed into the framework but not into policies; in
these cases, stop passing in the process since we don't need it.
mac_proc_check_setaudit -> mac_cred_check_setaudit
mac_proc_check_setaudit_addr -> mac_cred_check_setaudit_addr
mac_proc_check_setauid -> mac_cred_check_setauid
mac_proc_check_setegid -> mac_cred_check_setegid
mac_proc_check_seteuid -> mac_cred_check_seteuid
mac_proc_check_setgid -> mac_cred_check_setgid
mac_proc_check_setgroups -> mac_cred_ceck_setgroups
mac_proc_check_setregid -> mac_cred_check_setregid
mac_proc_check_setresgid -> mac_cred_check_setresgid
mac_proc_check_setresuid -> mac_cred_check_setresuid
mac_proc_check_setreuid -> mac_cred_check_setreuid
mac_proc_check_setuid -> mac_cred_check_setuid
Obtained from: TrustedBSD Project
Sponsored by: Google, Inc.
privilege grants so that dtrace can be more easily used to monitor
the security decisions being generated by the MAC Framework following
policy invocation.
Successful access control checks will be reported by:
mac_framework:kernel:<entrypoint>:mac_check_ok
Failed access control checks will be reported by:
mac_framework:kernel:<entrypoint>:mac_check_err
Successful privilege grants will be reported by:
mac_framework:kernel:priv_grant:mac_grant_ok
Failed privilege grants will be reported by:
mac_framework:kernel:priv_grant:mac_grant_err
In all cases, the return value (always 0 for _ok, otherwise an errno
for _err) will be reported via arg0 on the probe, and subsequent
arguments will hold entrypoint-specific data, in a style similar to
privilege tracing.
Obtained from: TrustedBSD Project
Sponsored by: Google, Inc.
wrapper macros that allow trace points and arguments to be declared
using a single macro rather than several. This means a lot less
repetition and vertical space for each trace point.
Use these macros when defining privilege and MAC Framework trace points.
Reviewed by: jb
MFC after: 1 week
they label, derive that information implicitly from the set of label
initializers in their policy operations set. This avoids a possible
class of programmer errors, while retaining the structure that
allows us to avoid allocating labels for objects that don't need
them. As before, we regenerate a global mask of labeled objects
each time a policy is loaded or unloaded, stored in mac_labeled.
Discussed with: csjp
Suggested by: Jacques Vidrine <nectar at apple.com>
Obtained from: TrustedBSD Project
Sponsored by: Apple, Inc.
(1) Abstract interpreter vnode labeling in execve(2) and mac_execve(2)
so that the general exec code isn't aware of the details of
allocating, copying, and freeing labels, rather, simply passes in
a void pointer to start and stop functions that will be used by
the framework. This change will be MFC'd.
(2) Introduce a new flags field to the MAC_POLICY_SET(9) interface
allowing policies to declare which types of objects require label
allocation, initialization, and destruction, and define a set of
flags covering various supported object types (MPC_OBJECT_PROC,
MPC_OBJECT_VNODE, MPC_OBJECT_INPCB, ...). This change reduces the
overhead of compiling the MAC Framework into the kernel if policies
aren't loaded, or if policies require labels on only a small number
or even no object types. Each time a policy is loaded or unloaded,
we recalculate a mask of labeled object types across all policies
present in the system. Eliminate MAC_ALWAYS_LABEL_MBUF option as it
is no longer required.
MFC after: 1 week ((1) only)
Reviewed by: csjp
Obtained from: TrustedBSD Project
Sponsored by: Apple, Inc.
exclusive access if there is at least one thread waiting for it to
become available. This may significantly reduce overhead by reducing
the number of unnecessary wakeups issued whenever the framework becomes
idle.
Annotate that we still signal the CV more than necessary and should
fix this.
Obtained from: TrustedBSD Project
Reviewed by: csjp
Tested by: csjp
kernel<->policy ABI version. Add a comment to the definition describing
it and listing known versions. Modify MAC_POLICY_SET() to reference the
current kernel version by name rather than by number.
Staticize mac_late, which is used only in mac_framework.c.
Obtained from: TrustedBSD Project
mac_framework.c Contains basic MAC Framework functions, policy
registration, sysinits, etc.
mac_syscalls.c Contains implementations of various MAC system calls,
including ENOSYS stubs when compiling without options
MAC.
Obtained from: TrustedBSD Project
consumes and implements, as well as the location of the framework and
policy modules.
Refactor MAC Framework versioning a bit so that the current ABI version can
be exported via a read-only sysctl.
Further update comments relating to locking/synchronization.
Update copyright to take into account these and other recent changes.
Obtained from: TrustedBSD Project
Framework and security modules, to src/sys/security/mac/mac_policy.h,
completing the removal of kernel-only MAC Framework include files from
src/sys/sys. Update the MAC Framework and MAC policy modules. Delete
the old mac_policy.h.
Third party policy modules will need similar updating.
Obtained from: TrustedBSD Project
subsystems will be a property of policy modules, which may require
access control check entry points to be invoked even when not actively
enforcing (i.e., to track information flow without providing
protection).
Obtained from: TrustedBSD Project
Suggested by: Christopher dot Vance at sparta dot com
begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
other problems while labels were first being added to various kernel
objects. They have outlived their usefulness.
MFC after: 1 month
Suggested by: Christopher dot Vance at SPARTA dot com
Obtained from: TrustedBSD Project
framework. This makes Giant protection around MAC operations which inter-
act with VFS conditional, based on the MPSAFE status of the file system.
Affected the following syscalls:
o __mac_get_fd
o __mac_get_file
o __mac_get_link
o __mac_set_fd
o __mac_set_file
o __mac_set_link
-Drop Giant all together in __mac_set_proc because the
mac_cred_mmapped_drop_perms_recurse routine no longer requires it.
-Move conditional Giant aquisitions to after label allocation routines.
-Move the conditional release of Giant to before label de-allocation
routines.
Discussed with: rwatson
of the socket label to thread-local storage, and replace it with
conditional acquisition based on debug.mpsafenet. Acquire the socket
lock around the copy operation.
In mac_set_fd(), replace the unconditional acquisition of Giant with
the conditional acquisition of Giant based on debug.mpsafenet. The socket
lock is acquired in mac_socket_label_set() so doesn't have to be
acquired here.
Obtained from: TrustedBSD Project
Sponsored by: SPAWAR, SPARTA
changes associated with adding System V IPC support. This will prevent
old modules from being used with the new kernel, and new modules from
being used with the old kernel.
for modules linked into the kernel or loaded very early, panics will
result otherwise, as the CV code it calls will panic due to its use
of a mutex before it is initialized.
for unknown events.
A number of modules return EINVAL in this instance, and I have left
those alone for now and instead taught MOD_QUIESCE to accept this
as "didn't do anything".
synchronization protecting against dynamic load and unload of MAC
policies, and instead simply blocks load and unload. In a static
configuration, this allows you to avoid the synchronization costs
associated with introducing dynamicism.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, McAfee Research
to use the "year1-year3" format, as opposed to "year1, year2, year3".
This seems to make lawyers more happy, but also prevents the
lines from getting excessively long as the years start to add up.
Suggested by: imp
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
system calls, and prefer these calls over getsockopt()/setsockopt()
for ABI reasons. When addressing UNIX domain sockets, these calls
retrieve and modify the socket label, not the label of the
rendezvous vnode.
- Create mac_copy_socket_label() entry point based on
mac_copy_pipe_label() entry point, intended to copy the socket
label into temporary storage that doesn't require a socket lock
to be held (currently Giant).
- Implement mac_copy_socket_label() for various policies.
- Expose socket label allocation, free, internalize, externalize
entry points as non-static from mac_net.c.
- Use mac_socket_label_set() in __mac_set_fd().
MAC-aware applications may now use mac_get_fd(), mac_set_fd(), and
mac_get_peer() to retrieve and set various socket labels without
directly invoking the getsockopt() interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
Giant and is also MPSAFE.
Push Giant further down into __mac_get_fd() and __mac_set_fd(),
grabbing it only for constrained regions dealing with VFS, and
dropping it entirely for operations related to labeling of pipes.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories