was satisified for the rest of the kernel on the i386 build except for
these two files. Rather than adding a submarine include to pcb.h, I've
added proc.h here.
I forgot to include these with the original commit. Sorry folks.
When a series of traces is included in a bug report, this will make it
easier to tie the trace information back to ps or threads output,
each of which will show the pid or the tid, but usually not both.
control the number of lines per page rather than a constant. The variable
can be examined and changed in ddb as '$lines'. Setting the variable to
0 will effectively turn off paging.
- Change db_putchar() to force out pending whitespace before outputting
newlines and carriage returns so that one can rub out content on the
current line via '\r \r' type strings.
- Change the simple pager to rub out the --More-- prompt explicitly when
the routine exits.
- Add some aliases to the simple pager to make it more compatible with
more(1): 'e' and 'j' do a single line. 'd' does half a page, and
'f' does a full page.
MFC after: 1 month
Inspired by: kris
but with slightly cleaned up interfaces.
The KSE structure has become the same as the "per thread scheduler
private data" structure. In order to not make the diffs too great
one is #defined as the other at this time.
The KSE (or td_sched) structure is now allocated per thread and has no
allocation code of its own.
Concurrency for a KSEGRP is now kept track of via a simple pair of counters
rather than using KSE structures as tokens.
Since the KSE structure is different in each scheduler, kern_switch.c
is now included at the end of each scheduler. Nothing outside the
scheduler knows the contents of the KSE (aka td_sched) structure.
The fields in the ksegrp structure that are to do with the scheduler's
queueing mechanisms are now moved to the kg_sched structure.
(per ksegrp scheduler private data structure). In other words how the
scheduler queues and keeps track of threads is no-one's business except
the scheduler's. This should allow people to write experimental
schedulers with completely different internal structuring.
A scheduler call sched_set_concurrency(kg, N) has been added that
notifies teh scheduler that no more than N threads from that ksegrp
should be allowed to be on concurrently scheduled. This is also
used to enforce 'fainess' at this time so that a ksegrp with
10000 threads can not swamp a the run queue and force out a process
with 1 thread, since the current code will not set the concurrency above
NCPU, and both schedulers will not allow more than that many
onto the system run queue at a time. Each scheduler should eventualy develop
their own methods to do this now that they are effectively separated.
Rejig libthr's kernel interface to follow the same code paths as
linkse for scope system threads. This has slightly hurt libthr's performance
but I will work to recover as much of it as I can.
Thread exit code has been cleaned up greatly.
exit and exec code now transitions a process back to
'standard non-threaded mode' before taking the next step.
Reviewed by: scottl, peter
MFC after: 1 week
the thread ID and call db_trace_thread().
Since arm has all the logic in db_stack_trace_cmd(), rename the
new DB_COMMAND function to db_stack_trace to avoid conflicts on
arm.
While here, have db_stack_trace parse its own arguments so that
we can use a more natural radix for IDs. If the ID is not a thread
ID, or more precisely when no thread exists with the ID, try if
there's a process with that ID and return the first thread in it.
This makes it easier to print stack traces from the ps output.
requested by: rwatson@
tested on: amd64, i386, ia64
more generic, but that didn't actually happen. Since the feature to
switch backends (and historically this means from DDB to GDB) is
important, make sure people can do just that until such the generic
mechanism actually sees the light of day.
Suggested by: rwatson@
db_elf.c, db_kld.c: The new KDB backend supports both at the same time.
db_sysctl.c: The functionality has been moved to sys/kern/subr_kdb.c.
db_trap.c: The DDB entry point has been moved to sys/ddb/db_main.c.
Most of the changes are a direct result of adding thread awareness.
Typically, DDB_REGS is gone. All registers are taken from the
trapframe and backtraces use the PCB based contexts. DDB_REGS was
defined to be a trapframe on all platforms anyway.
Thread awareness introduces the following new commands:
thread X switch to thread X (where X is the TID),
show threads list all threads.
The backtrace code has been made more flexible so that one can
create backtraces for any thread by giving the thread ID as an
argument to trace.
With this change, ia64 has support for breakpoints.
sleep queue interface:
- Sleep queues attempt to merge some of the benefits of both sleep queues
and condition variables. Having sleep qeueus in a hash table avoids
having to allocate a queue head for each wait channel. Thus, struct cv
has shrunk down to just a single char * pointer now. However, the
hash table does not hold threads directly, but queue heads. This means
that once you have located a queue in the hash bucket, you no longer have
to walk the rest of the hash chain looking for threads. Instead, you have
a list of all the threads sleeping on that wait channel.
- Outside of the sleepq code and the sleep/cv code the kernel no longer
differentiates between cv's and sleep/wakeup. For example, calls to
abortsleep() and cv_abort() are replaced with a call to sleepq_abort().
Thus, the TDF_CVWAITQ flag is removed. Also, calls to unsleep() and
cv_waitq_remove() have been replaced with calls to sleepq_remove().
- The sched_sleep() function no longer accepts a priority argument as
sleep's no longer inherently bump the priority. Instead, this is soley
a propery of msleep() which explicitly calls sched_prio() before
blocking.
- The TDF_ONSLEEPQ flag has been dropped as it was never used. The
associated TDF_SET_ONSLEEPQ and TDF_CLR_ON_SLEEPQ macros have also been
dropped and replaced with a single explicit clearing of td_wchan.
TD_SET_ONSLEEPQ() would really have only made sense if it had taken
the wait channel and message as arguments anyway. Now that that only
happens in one place, a macro would be overkill.
also prints the actual numerical value of the symbol in question.
Users of addr2line(1) will be less proficient in hex arithmetic as a
consequence.
This amongst other things means that traceback lines change from:
siointr1(c4016800,c073bda0,0,c06b699c,69f) at siointr1+0xc5
to
siointr1(c4016800,c073bda0,0,c06b699c,69f) at 0xc062b0bd = siointr1+0xc5
I made this an option to avoid bikesheds.
~
~
~
debug.ddb_use_printf sysctl, output kernel debugger data to both the
console and kernel message buffer via printf. This fixes the case where
backtrace() went directly to the console and should help debugging greatly.
Thanks to Ian Dowse for the work, minor edits or any bugs are by myself.
Submitted by: iedowse
some symbols in X_db_search_symbol(). Reject the same symbols that
rev.1.13 did (all except STT_OBJECT and STT_FUNC), except don't reject
typeless symbols. This keeps the typeless symbols in non-verbosely
written assembler code visible, but makes file symbols invisible. ELF
file symbols have type STT_FILE and value 0, so this stops small values
and offsets sometimes being displayed in terms of the first file symbol
in the kernel (usually device_if.c). I think it rejects some other
unwanted symbols (small absolute symbols for things like struct offsets).
It may reject some wanted symbols (large absolute symbols for addresses
like PTmap).
prototypes of cpu_halt(), cpu_reset() and swi_vm() from md_var.h to
cpu.h. This affects db_command.c and kern_shutdown.c.
ia64: move all MD prototypes from cpu.h to md_var.h. This affects
madt.c, interrupt.c and mp_machdep.c. Remove is_physical_memory().
It's not used (vm_machdep.c).
alpha: the MD prototypes have been left in cpu.h with a comment
that they should be there. Moving them is left for later. It was
expected that the impact would be significant enough to be done in
a seperate commit.
powerpc: MD prototypes left in cpu.h. Comment added.
Suggested by: bde
Tested with: make universe (pc98 incomplete)
integer value and then to construct the integer from it. This buffer
was sizeof(int) bytes long, which was fine until the (undocumented) 'g'
modifier for 8-byte integers was introduced. Change this to sizeof(uint64_t).
callout when a specified number of lines have been output. This can be
used to implement pagers for ddb commands that output a lot of text. A
simple paging function is included that automatically rearms itself when
fired.
Reviewed by: bde, julian
fit on one line. Account for threads better.
* No need to report that it is on a sleep queue if it is actually sleeping
* "Normal" state is almost ubiquitous.. only report abnormal states.
* increment the #lines count for each separate thread shown in threaded
programs.
makes it less likely that a threaded program will make all the data
on a screen overflow off the top of the screen.
I'm not convinced there is anything major wrong with the patch but
them's the rules..
I am using my "David's mentor" hat to revert this as he's
offline for a while.
data structure called kse_upcall to manage UPCALL. All KSE binding
and loaning code are gone.
A thread owns an upcall can collect all completed syscall contexts in
its ksegrp, turn itself into UPCALL mode, and takes those contexts back
to userland. Any thread without upcall structure has to export their
contexts and exit at user boundary.
Any thread running in user mode owns an upcall structure, when it enters
kernel, if the kse mailbox's current thread pointer is not NULL, then
when the thread is blocked in kernel, a new UPCALL thread is created and
the upcall structure is transfered to the new UPCALL thread. if the kse
mailbox's current thread pointer is NULL, then when a thread is blocked
in kernel, no UPCALL thread will be created.
Each upcall always has an owner thread. Userland can remove an upcall by
calling kse_exit, when all upcalls in ksegrp are removed, the group is
atomatically shutdown. An upcall owner thread also exits when process is
in exiting state. when an owner thread exits, the upcall it owns is also
removed.
KSE is a pure scheduler entity. it represents a virtual cpu. when a thread
is running, it always has a KSE associated with it. scheduler is free to
assign a KSE to thread according thread priority, if thread priority is changed,
KSE can be moved from one thread to another.
When a ksegrp is created, there is always N KSEs created in the group. the
N is the number of physical cpu in the current system. This makes it is
possible that even an userland UTS is single CPU safe, threads in kernel still
can execute on different cpu in parallel. Userland calls kse_create to add more
upcall structures into ksegrp to increase concurrent in userland itself, kernel
is not restricted by number of upcalls userland provides.
The code hasn't been tested under SMP by author due to lack of hardware.
Reviewed by: julian
implement ALT_BREAK_TO_DEBUGGER. The caller provides a pointer to a state
variable to allow different state to be maintained for separate instances of
a device.
- Use struct vm_map * instead of vm_map_t in db_break.h to avoid its users
needing to include vm headers.
Requested by: njl
(show thread {address})
Remove the IDLE kse state and replace it with a change in
the way threads sahre KSEs. Every KSE now has a thread, which is
considered its "owner" however a KSE may also be lent to other
threads in the same group to allow completion of in-kernel work.
n this case the owner remains the same and the KSE will revert to the
owner when the other work has been completed.
All creations of upcalls etc. is now done from
kse_reassign() which in turn is called from mi_switch or
thread_exit(). This means that special code can be removed from
msleep() and cv_wait().
kse_release() does not leave a KSE with no thread any more but
converts the existing thread into teh KSE's owner, and sets it up
for doing an upcall. It is just inhibitted from being scheduled until
there is some reason to do an upcall.
Remove all trace of the kse_idle queue since it is no-longer needed.
"Idle" KSEs are now on the loanable queue.
- Make DDB use %y instead of %z.
- Teach GCC about %y.
- Implement support for the C99 %z format modifier.
Approved by: re@
Reviewed by: peter
Tested on: i386, sparc64
It is never used. I left it there from pre-KSE days as I didn't know
if I'd need it or not but now I know I don't.. It's functionality
is in TDI_IWAIT in the thread.
in specific situations. The owner thread must be blocked, and the
borrower can not proceed back to user space with the borrowed KSE.
The borrower will return the KSE on the next context switch where
teh owner wants it back. This removes a lot of possible
race conditions and deadlocks. It is consceivable that the
borrower should inherit the priority of the owner too.
that's another discussion and would be simple to do.
Also, as part of this, the "preallocatd spare thread" is attached to the
thread doing a syscall rather than the KSE. This removes the need to lock
the scheduler when we want to access it, as it's now "at hand".
DDB now shows a lot mor info for threaded proceses though it may need
some optimisation to squeeze it all back into 80 chars again.
(possible JKH project)
Upcalls are now "bound" threads, but "KSE Lending" now means that
other completing syscalls can be completed using that KSE before the upcall
finally makes it back to the UTS. (getting threads OUT OF THE KERNEL is
one of the highest priorities in the KSE system.) The upcall when it happens
will present all the completed syscalls to the KSE for selection.