vm_page_alloc not to insert this page into an object. The pindex is
still used for colorization.
- Rework vm_page_select_* to accept a color instead of an object and
pindex to work with VM_PAGE_NOOBJ.
- Document other VM_ALLOC_ flags.
Reviewed by: peter, jake
be no major change in performance from this change at this time but this
will allow other work to progress: Giant lock removal around VM system
in favor of per-object mutexes, ranged fsyncs, more optimal COMMIT rpc's for
NFS, partial filesystem syncs by the syncer, more optimal object flushing,
etc. Note that the buffer cache is already using a similar splay tree
mechanism.
Note that a good chunk of the old hash table code is still in the tree.
Alan or I will remove it prior to the release if the new code does not
introduce unsolvable bugs, else we can revert more easily.
Submitted by: alc (this is Alan's code)
Approved by: re
- Remove all instances of the mallochash.
- Stash the slab pointer in the vm page's object pointer when allocating from
the kmem_obj.
- Use the overloaded object pointer to find slabs for malloced memory.
pmap_zero_page() and pmap_zero_page_area() were modified to accept
a struct vm_page * instead of a physical address, vm_page_zero_fill()
and vm_page_zero_fill_area() have served no purpose.
to return a wired page.
o Use VM_ALLOC_WIRED within Alpha's pmap_growkernel(). Also, because
Alpha's pmap_growkernel() calls vm_page_alloc() from within a critical
section, specify VM_ALLOC_INTERRUPT instead of VM_ALLOC_SYSTEM. (Only
VM_ALLOC_INTERRUPT is implemented entirely with a spin mutex.)
o Assert that the page queues mutex is held in vm_page_wire()
on Alpha, just like the other platforms.
o Assert that the page queues lock is held in vm_page_unwire().
o Make vm_page_lock_queues() and vm_page_unlock_queues() visible
to kernel loadable modules.
queue lock (revision 1.33 of vm/vm_page.c removed them).
o Make the free queue lock a spin lock because it's sometimes acquired
inside of a critical section.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
style(9)
- Minor space adjustment in cases where we have "( ", " )", if(), return(),
while(), for(), etc.
- Add /* SYMBOL */ after a few #endifs.
Reviewed by: alc
and again in vm_page.c and vm_pageq.c.
o Delete unusused prototypes. (Mainly a result of the earlier renaming
of various functions from vm_page_*() to vm_pageq_*().)
count that would otherwise be on one of the free queues. This eliminates a
panic when broken programs unmap memory that still has pending IO from raw
devices.
Reviewed by: dillon, alc
on and off since John Dyson left his work-in-progress.
It is off by default for now. sysctl vm.zeroidle_enable=1 to turn it on.
There are some hacks here to deal with the present lack of preemption - we
yield after doing a small number of pages since we wont preempt otherwise.
This is basically Matt's algorithm [with hysteresis] with an idle process
to call it in a similar way it used to be called from the idle loop.
I cleaned up the includes a fair bit here too.
Also removed some spl's and added some VM mutexes, but they are not actually
used yet, so this commit does not really make any operational changes
to the system.
vm_page.c relates to vm_page_t manipulation, including high level deactivation,
activation, etc... vm_pageq.c relates to finding free pages and aquiring
exclusive access to a page queue (exclusivity part not yet implemented).
And the world still builds... :-)
most of these inlines had been bloated in -current far beyond their
original intent. Normalize prototypes and function declarations to be ANSI
only (half already were). And do some general cleanup.
(kernel size also reduced by 50-100K, but that isn't the prime intent)
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
Tor created a while ago, removes the raw I/O piece (that has cache coherency
problems), and adds a buffer cache / VM freeing piece.
Essentially this patch causes O_DIRECT I/O to not be left in the cache, but
does not prevent it from going through the cache, hence the 80%. For
the last 20% we need a method by which the I/O can be issued directly to
buffer supplied by the user process and bypass the buffer cache entirely,
but still maintain cache coherency.
I also have the code working under -stable but the changes made to sys/file.h
may not be MFCable, so an MFC is not on the table yet.
Submitted by: tegge, dillon
vm_mtx does not recurse and is required for most low level
vm operations.
faults can not be taken without holding Giant.
Memory subsystems can now call the base page allocators safely.
Almost all atomic ops were removed as they are covered under the
vm mutex.
Alpha and ia64 now need to catch up to i386's trap handlers.
FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).
Reviewed (partially) by: jake, jhb
in 4.2-REL which I ripped out in -stable and -current when implementing the
low-memory handling solution. However, maxlaunder turns out to be the saving
grace in certain very heavily loaded systems (e.g. newsreader box). The new
algorithm limits the number of pages laundered in the first pageout daemon
pass. If that is not sufficient then suceessive will be run without any
limit.
Write I/O is now pipelined using two sysctls, vfs.lorunningspace and
vfs.hirunningspace. This prevents excessive buffered writes in the
disk queues which cause long (multi-second) delays for reads. It leads
to more stable (less jerky) and generally faster I/O streaming to disk
by allowing required read ops (e.g. for indirect blocks and such) to occur
without interrupting the write stream, amoung other things.
NOTE: eventually, filesystem write I/O pipelining needs to be done on a
per-device basis. At the moment it is globalized.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
set equal to the number of kilobytes in your cache. The old options are
still supported for backwards compatibility.
Submitted by: Kelly Yancey <kbyanc@posi.net>
and sysv shared memory support for it. It implements a new
PG_UNMANAGED flag that has slightly different characteristics
from PG_FICTICIOUS.
A new sysctl, kern.ipc.shm_use_phys has been added to enable the
use of physically-backed sysv shared memory rather then swap-backed.
Physically backed shm segments are not tracked with PV entries,
allowing programs which use a large shm segment as a rendezvous
point to operate without eating an insane amount of KVM in the
PV entry management. Read: Oracle.
Peter's OBJT_PHYS object will also allow us to eventually implement
page-table sharing and/or 4MB physical page support for such segments.
We're half way there.
to various pmap_*() functions instead of looking up the physical address
and passing that. In many cases, the first thing the pmap code was doing
was going to a lot of trouble to get back the original vm_page_t, or
it's shadow pv_table entry.
Inspired by: John Dyson's 1998 patches.
Also:
Eliminate pv_table as a seperate thing and build it into a machine
dependent part of vm_page_t. This eliminates having a seperate set of
structions that shadow each other in a 1:1 fashion that we often went to
a lot of trouble to translate from one to the other. (see above)
This happens to save 4 bytes of physical memory for each page in the
system. (8 bytes on the Alpha).
Eliminate the use of the phys_avail[] array to determine if a page is
managed (ie: it has pv_entries etc). Store this information in a flag.
Things like device_pager set it because they create vm_page_t's on the
fly that do not have pv_entries. This makes it easier to "unmanage" a
page of physical memory (this will be taken advantage of in subsequent
commits).
Add a function to add a new page to the freelist. This could be used
for reclaiming the previously wasted pages left over from preloaded
loader(8) files.
Reviewed by: dillon
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.
madvise().
This feature prevents the update daemon from gratuitously flushing
dirty pages associated with a mapped file-backed region of memory. The
system pager will still page the memory as necessary and the VM system
will still be fully coherent with the filesystem. Modifications made
by other means to the same area of memory, for example by write(), are
unaffected. The feature works on a page-granularity basis.
MAP_NOSYNC allows one to use mmap() to share memory between processes
without incuring any significant filesystem overhead, putting it in
the same performance category as SysV Shared memory and anonymous memory.
Reviewed by: julian, alc, dg
eliminate an extra (useless) level of indirection in half of the page
queue accesses and (2) to use a single name for each queue throughout,
instead of, e.g., "vm_page_queue_active" in some places and
"vm_page_queues[PQ_ACTIVE]" in others.
Reviewed by: dillon
Replace various VM related page count calculations strewn over the
VM code with inlines to aid in readability and to reduce fragility
in the code where modules depend on the same test being performed
to properly sleep and wakeup.
Split out a portion of the page deactivation code into an inline
in vm_page.c to support vm_page_dontneed().
add vm_page_dontneed(), which handles the madvise MADV_DONTNEED
feature in a related commit coming up for vm_map.c/vm_object.c. This
code prevents degenerate cases where an essentially active page may
be rotated through a subset of the paging lists, resulting in premature
disposal.