This is good enough to be able to run a RELENG_4 gdb binary against
a RELENG_4 application, along with various other tools (eg: 4.x gcore).
We use this at work.
ia32_reg.[ch]: handle the 32 bit register file format, used by ptrace,
procfs and core dumps.
procfs_*regs.c: vary the format of proc/XXX/*regs depending on the client
and target application.
procfs_map.c: Don't print a 64 bit value to 32 bit consumers, or their
sscanf fails. They expect an unsigned long.
imgact_elf.c: produce a valid 32 bit coredump for 32 bit apps.
sys_process.c: handle 32 bit consumers debugging 32 bit targets. Note
that 64 bit consumers can still debug 32 bit targets.
IA64 has got stubs for ia32_reg.c.
Known limitations: a 5.x/6.x gdb uses get/setcontext(), which isn't
implemented in the 32/64 wrapper yet. We also make a tiny patch to
gdb pacify it over conflicting formats of ld-elf.so.1.
Approved by: re
The split-up code is derived from the ia64 code originally.
Note that I have only compile-tested this, not actually run-tested it.
The ia64 side of the force is missing some significant chunks of signal
delivery code.
systems where the data/stack/etc limits are too big for a 32 bit process.
Move the 5 or so identical instances of ELF_RTLD_ADDR() into imgact_elf.c.
Supply an ia32_fixlimits function. Export the clip/default values to
sysctl under the compat.ia32 heirarchy.
Have mmap(0, ...) respect the current p->p_limits[RLIMIT_DATA].rlim_max
value rather than the sysctl tweakable variable. This allows mmap to
place mappings at sensible locations when limits have been reduced.
Have the imgact_elf.c ld-elf.so.1 placement algorithm use the same
method as mmap(0, ...) now does.
Note that we cannot remove all references to the sysctl tweakable
maxdsiz etc variables because /etc/login.conf specifies a datasize
of 'unlimited'. And that causes exec etc to fail since it can no
longer find space to mmap things.
prime objectives are:
o Implement a syscall path based on the epc inststruction (see
sys/ia64/ia64/syscall.s).
o Revisit the places were we need to save and restore registers
and define those contexts in terms of the register sets (see
sys/ia64/include/_regset.h).
Secundairy objectives:
o Remove the requirement to use contigmalloc for kernel stacks.
o Better handling of the high FP registers for SMP systems.
o Switch to the new cpu_switch() and cpu_throw() semantics.
o Add a good unwinder to reconstruct contexts for the rare
cases we need to (see sys/contrib/ia64/libuwx)
Many files are affected by this change. Functionally it boils
down to:
o The EPC syscall doesn't preserve registers it does not need
to preserve and places the arguments differently on the stack.
This affects libc and truss.
o The address of the kernel page directory (kptdir) had to
be unstaticized for use by the nested TLB fault handler.
The name has been changed to ia64_kptdir to avoid conflicts.
The renaming affects libkvm.
o The trapframe only contains the special registers and the
scratch registers. For syscalls using the EPC syscall path
no scratch registers are saved. This affects all places where
the trapframe is accessed. Most notably the unaligned access
handler, the signal delivery code and the debugger.
o Context switching only partly saves the special registers
and the preserved registers. This affects cpu_switch() and
triggered the move to the new semantics, which additionally
affects cpu_throw().
o The high FP registers are either in the PCB or on some
CPU. context switching for them is done lazily. This affects
trap().
o The mcontext has room for all registers, but not all of them
have to be defined in all cases. This mostly affects signal
delivery code now. The *context syscalls are as of yet still
unimplemented.
Many details went into the removal of the requirement to use
contigmalloc for kernel stacks. The details are mostly CPU
specific and limited to exception_save() and exception_restore().
The few places where we create, destroy or switch stacks were
mostly simplified by not having to construct physical addresses
and additionally saving the virtual addresses for later use.
Besides more efficient context saving and restoring, which of
course yields a noticable speedup, this also fixes the dreaded
SMP bootup problem as a side-effect. The details of which are
still not fully understood.
This change includes all the necessary backward compatibility
code to have it handle older userland binaries that use the
break instruction for syscalls. Support for break-based syscalls
has been pessimized in favor of a clean implementation. Due to
the overall better performance of the kernel, this will still
be notived as an improvement if it's noticed at all.
Approved by: re@ (jhb)
kern_sigprocmask() in the various binary compatibility emulators.
- Replace calls to sigsuspend(), sigaltstack(), sigaction(), and
sigprocmask() that used the stackgap with calls to the corresponding
kern_sig*() functions instead without using the stackgap.
by allprison_mtx), a unique prison/jail identifier field, two path
fields (pr_path for reporting and pr_root vnode instance) to store
the chroot() point of each jail.
o Add jail_attach(2) to allow a process to bind to an existing jail.
o Add change_root() to perform the chroot operation on a specified
vnode.
o Generalize change_dir() to accept a vnode, and move namei() calls
to callers of change_dir().
o Add a new sysctl (security.jail.list) which is a group of
struct xprison instances that represent a snapshot of active jails.
Reviewed by: rwatson, tjr
This is for the not-quite-ready signal/fpu abi stuff. It may not see
the light of day, but I'm certainly not going to be able to validate it
when getting shot in the foot due to syscall number conflicts.
execve_secure() system call, which permits a process to pass in a label
for a label change during exec. This permits SELinux to change the
label for the resulting exec without a race following a manual label
change on the process. Because this interface uses our general purpose
MAC label abstraction, we call it execve_mac(), and wrap our port of
SELinux's execve_secure() around it with appropriate sid mappings.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
sysentvec. Initialized all fields of all sysentvecs, which will allow
them to be used instead of constants in more places. Provided stack
fixup routines for emulations that previously used the default.