low-level lock used by the libpthread implementation. In the
future, we'll eliminate spinlocks from libc but that will wait
until after 5.1-release.
Don't call an application signal handler if the handler is
the same as the library-installed handler. This seems to
be possible after a fork and is the cause of konsole hangs.
Approved by: re@ (jhb)
KSEs when it's thread exits; allow the GC handler to do that.
o Make spinlock/spinlock critical regions.
The following were submitted by davidxu
o Alow thr_switch() to take a null mailbox argument.
o Better protect cancellation checks.
o Don't set KSE specific data when creating new KSEs; rely on the
first upcall of the KSE to set it.
o Add the ability to set the maximum concurrency level and do this
automatically. We should have a way to enable/disable this with
some sort of tunable because some applications may not want this
to be the default.
o Hold the scheduling lock across thread switch calls.
o If scheduling of a thread fails, make sure to remove it from the list
of active threads.
o Better protect accesses to a joining threads when the target thread is
exited and detached.
o Remove some macro definitions that are now provided by <sys/kse.h>.
o Don't leave the library in threaded mode if creation of the initial
KSE fails.
o Wakeup idle KSEs when there are threads ready to run.
o Maintain the number of threads active in the priority queue.
environment. This includes support for multiple KSEs and KSEGs.
The ability to create more than 1 KSE via pthread_setconcurrency()
is in the works as well as support for PTHREAD_SCOPE_SYSTEM threads.
Those should come shortly.
There are still some known issues which davidxu and I are working
on, but it'll make it easier for us by committing what we have.
This library now passes all of the ACE tests that libc_r passes
with the exception of one. It also seems to work OK with KDE
including konqueror, kwrite, etc. I haven't been able to get
mozilla to run due to lack of java plugin, so I'd be interested
to see how it works with that.
Reviewed by: davidxu
more complicated things than just setting the lock to 0.
- Implement stubs for this function in libc and the two threading libraries
that are currently in the tree.
The new libpthread will provide POSIX threading support using KSE.
These files were previously repo-copied from src/lib/libc_r.
Reviewed by: deischen
Approved by: -arch
and pthread_resume_all_np(). These suspend and resume all threads except
the current thread, respectively. The existing functions pthread_single_np()
and pthread_multi_np(), which formerly had no effect, now exhibit the same
behaviour and pthread_suspend_all_np() and pthread_resume_all_np(). These
functions have been added mostly for the native java port.
Don't allow the uthread kernel pipe to use the same descriptors as
stdio. Mostily submitted by Oswald Buddenhagen <ossi@kde.org>.
Correct some minor style nits.
Also, make an internal _getprogname() that is used only inside
libc. For libc, getprogname(3) is a weak symbol in case a
function of the same name is defined in userland.
_foo - wrapped system call
foo - weak definition to _foo
and for cancellation points:
_foo - wrapped system call
__foo - enter cancellation point, call _foo(), leave
cancellation point
foo - weak definition to __foo
Change use of global _thread_run to call a function to get the
currently running thread.
Make all pthread_foo functions weak definitions to _pthread_foo,
where _pthread_foo is the implementation. This allows an application
to provide its own pthread functions.
Provide slightly different versions of pthread_mutex_lock and
pthread_mutex_init so that we can tell the difference between
a libc mutex and an application mutex. Threads holding mutexes
internal to libc should never be allowed to exit, call signal
handlers, or cancel.
Approved by: -arch
just use _foo() <-- foo(). In the case of a libpthread that doesn't do
call conversion (such as linuxthreads and our upcoming libpthread), this
is adequate. In the case of libc_r, we still need three names, which are
now _thread_sys_foo() <-- _foo() <-- foo().
Convert all internal libc usage of: aio_suspend(), close(), fsync(), msync(),
nanosleep(), open(), fcntl(), read(), and write() to _foo() instead of foo().
Remove all internal libc usage of: creat(), pause(), sleep(), system(),
tcdrain(), wait(), and waitpid().
Make thread cancellation fully POSIX-compliant.
Suggested by: deischen
o Runnable threads are now maintained in priority queues. The
implementation requires two things:
1.) The priority queues must be protected during insertion
and removal of threads. Since the kernel scheduler
must modify the priority queues, a spinlock for
protection cannot be used. The functions
_thread_kern_sched_defer() and _thread_kern_sched_undefer()
were added to {un}defer kernel scheduler activation.
2.) A thread (active) priority change can be performed only
when the thread is removed from the priority queue. The
implementation uses a threads active priority when
inserting it into the queue.
A by-product is that thread switches are much faster. A
separate queue is used for waiting and/or blocked threads,
and it is searched at most 2 times in the kernel scheduler
when there are active threads. It should be possible to
reduce this to once by combining polling of threads waiting
on I/O with the loop that looks for timed out threads and
the minimum timeout value.
o Functions to defer kernel scheduler activation were added. These
are _thread_kern_sched_defer() and _thread_kern_sched_undefer()
and may be called recursively. These routines do not block the
scheduling signal, but latch its occurrence. The signal handler
will not call the kernel scheduler when the running thread has
deferred scheduling, but it will be called when running thread
undefers scheduling.
o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the
POSIX routines required by this should now be implemented.
One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required
to be defined by including pthread.h. These defines are currently
in sched.h. I modified pthread.h to include sched.h but don't
know if this is the proper thing to do.
o Added support for priority protection and inheritence mutexes.
This allows definition of _POSIX_THREAD_PRIO_PROTECT and
_POSIX_THREAD_PRIO_INHERIT.
o Added additional error checks required by POSIX for mutexes and
condition variables.
o Provided a wrapper for sigpending which is marked as a hidden
syscall.
o Added a non-portable function as a debugging aid to allow an
application to monitor thread context switches. An application
can install a routine that gets called everytime a thread
(explicitly created by the application) gets context switched.
The routine gets passed the pthread IDs of the threads that are
being switched in and out.
Submitted by: Dan Eischen <eischen@vigrid.com>
Changes by me:
o Added a PS_SPINBLOCK state to deal with the priority inversion
problem most often (I think) seen by threads calling malloc/free/realloc.
o Dispatch signals to the running thread directly rather than at a
context switch to avoid the situation where the switch never occurs.
with -D_LOCK_DEBUG. This adds the file name and line number to each lock
call and these are stored in the spinlock structure. When using debug
mode, the lock function will check if the thread is trying to lock
something it has already locked. This is not supposed to happen because
the lock will be freed too early.
Without lock debug, libc_r should be smaller and slightly faster.
for the process, not a separate set for each thread). By default, the
process now only has signal handlers installed for SIGVTALRM, SIGINFO
and SIGCHLD. The thread kernel signal handler is installed for other
signals on demand. This means that SIG_IGN and SIG_DFL processing is now
left to the kernel, not the thread kernel.
Change the signal dispatch to no longer use a signal thread, and
call the signal handler using the stack of the thread that has the
signal pending.
Change the atomic lock method to use test-and-set asm code with
a yield if blocked. This introduces separate locks for each type
of object instead of blocking signals to prevent a context
switch. It was this blocking of signals that caused the performance
degradation the people have noted.
This is a *big* change!