previously know by StarSemi STR9104.
Tested by the submitter on an Emprex NSD-100 board.
Submitted by: Yohanes Nugroho <yohanes at gmail.com>
Reviewed by: freebsd-arm, stas
Obtained from: //depot/projects/str91xx/...
This replaces d_mmap() with the d_mmap2() implementation and also
changes the type of offset to vm_ooffset_t.
Purge d_mmap2().
All driver modules will need to be rebuilt since D_VERSION is also
bumped.
Reviewed by: jhb@
MFC after: Not in this lifetime...
This brings hwpmc(4) support for 2nd and 3rd generation XScale cores.
Right now it's enabled by default to make sure we test this a bit.
When the time comes it can be disabled by default.
Tested on Gateworks boards.
A man page is coming.
Obtained from: //depot/user/rpaulo/xscalepmc/...
Introduce ATA_CAM kernel option, turning ata(4) controller drivers into
cam(4) interface modules. When enabled, this options deprecates all ata(4)
peripheral drivers (ad, acd, ...) and interfaces and allows cam(4) drivers
(ada, cd, ...) and interfaces to be natively used instead.
As side effect of this, ata(4) mode setting code was completely rewritten
to make controller API more strict and permit above change. While doing
this, SATA revision was separated from PATA mode. It allows DMA-incapable
SATA devices to operate and makes hw.ata.atapi_dma tunable work again.
Also allow ata(4) controller drivers (except some specific or broken ones)
to handle larger data transfers. Previous constraint of 64K was artificial
and is not really required by PCI ATA BM specification or hardware.
Submitted by: nwitehorn (powerpc part)
- Reorder detach so that ether_ifdetach() is called first. This removes
the race that ATE_FLAG_DETACHING closed, so that flag can be removed.
- Trim a duplicate clearing of IFF_DRV_RUNNING.
Reviewed by: imp
- Remove most of direct relations between ATA(4) peripherial and controller
levels. It makes logic more transparent and is a mandatory step to wrap
ATA(4) controller level into ATA-native CAM SIM.
- Tune AHCI and SATA2 SiI drivers memory allocation a bit to allow bigger
I/O transaction sizes without additional cost.
while in kernel mode, and later changing signal mask to block the
signal, was fixed for sigprocmask(2) and ptread_exit(3). The same race
exists for sigreturn(2), setcontext(2) and swapcontext(2) syscalls.
Use kern_sigprocmask() instead of direct manipulation of td_sigmask to
reschedule newly blocked signals, closing the race.
Reviewed by: davidxu
Tested by: pho
MFC after: 1 month
the memory or D-cache, depending on the semantics of the platform.
vm_sync_icache() is basically a wrapper around pmap_sync_icache(),
that translates the vm_map_t argumument to pmap_t.
o Introduce pmap_sync_icache() to all PMAP implementation. For powerpc
it replaces the pmap_page_executable() function, added to solve
the I-cache problem in uiomove_fromphys().
o In proc_rwmem() call vm_sync_icache() when writing to a page that
has execute permissions. This assures that when breakpoints are
written, the I-cache will be coherent and the process will actually
hit the breakpoint.
o This also fixes the Book-E PMAP implementation that was missing
necessary locking while trying to deal with the I-cache coherency
in pmap_enter() (read: mmu_booke_enter_locked).
The key property of this change is that the I-cache is made coherent
*after* writes have been done. Doing it in the PMAP layer when adding
or changing a mapping means that the I-cache is made coherent *before*
any writes happen. The difference is key when the I-cache prefetches.
- Move USB serial drivers earlier to match their placement in other kernel
configs.
- Add descriptions to various USB drivers.
- Move the USB wireless drivers into a new section.
- Add ulscom to the list of USB serial drivers.
by looking at the bases used for non-relocatable executables by gnu ld(1),
and adjusting it slightly.
Discussed with: bz
Reviewed by: kan
Tested by: bz (i386, amd64), bsam (linux)
MFC after: some time
pmap_dcache_wbinv_all/pmap_copy_page functions which we might want
to take advatage of later. This fixes the build with PMAP_DEBUG
defined.
Discussed with: cognet
first and the native ia32 compat as middle (before other things).
o(ld)brandinfo as well as third party like linux, kfreebsd, etc.
stays on SI_ORDER_ANY coming last.
The reason for this is only to make sure that even in case we would
overflow the MAX_BRANDS sized array, the native FreeBSD brandinfo
would still be there and the system would be operational.
Reviewed by: kib
MFC after: 1 month
Remove the altkstacks, instead instantiate threads with kernel stack
allocated with the right size from the start. For the thread that has
kernel stack cached, verify that requested stack size is equial to the
actual, and reallocate the stack if sizes differ [1].
This fixes the bug introduced by r173361 that was committed several days
after r173004 and consisted of kthread_add(9) ignoring the non-default
kernel stack size.
Also, r173361 removed the caching of the kernel stacks for a non-first
thread in the process. Introduce separate kernel stack cache that keeps
some limited amount of preallocated kernel stacks to lower the latency
of thread allocation. Add vm_lowmem handler to prune the cache on
low memory condition. This way, system with reasonable amount of the
threads get lower latency of thread creation, while still not exhausting
significant portion of KVA for unused kstacks.
Submitted by: peter [1]
Discussed with: jhb, julian, peter
Reviewed by: jhb
Tested by: pho (and retested according to new test scenarious)
MFC after: 1 week
allocated with the right size from the start. For the thread that has
kernel stack cached, verify that requested stack size is equial to the
actual, and reallocate the stack if sizes differ [1].
This fixes the bug introduced by r173361 that was committed several days
after r173004 and consisted of kthread_add(9) ignoring the non-default
kernel stack size.
Also, r173361 removed the caching of the kernel stacks for a non-first
thread in the process. Introduce separate kernel stack cache that keeps
some limited amount of preallocated kernel stacks to lower the latency
of thread allocation. Add vm_lowmem handler to prune the cache on
low memory condition. This way, system with reasonable amount of the
threads get lower latency of thread creation, while still not exhausting
significant portion of KVA for unused kstacks.
Submitted by: peter [1]
Discussed with: jhb, julian, peter
Reviewed by: jhb
Tested by: pho
MFC after: 1 week
- The device is based on Marvell 88F6281 system on chip.
- More info about the platform at http://www.plugcomputer.org
- To build the FreeBSD kernel:
make buildkernel TARGET_ARCH=arm KERNCONF=SHEEVAPLUG
- Installation notes at: http://wiki.freebsd.org/FreeBSDMarvell
Submitted by: Michal Hajduk
Obtained from: Semihalf
Modules on Marvell SOC can be selectively PM-disabled, and we must not access
disabled devices' registers (attempt to initialize them) unconditionally, as
this leads to the system hang. This patch introduces graceful handling of the
PM state during devices init.
Submitted by: Michal Hajduk
Obtained from: Semihalf
will initialize the FIFO memory correctly on attach. Before
that this values was intialized in only in at91_usart_bus_attach
which is called after the uart(4) memory allocation happens.
Approved by: re (kib)
MFC after: 1 week
vnet.h, we now use jails (rather than vimages) as the abstraction
for virtualization management, and what remained was specific to
virtual network stacks. Minor cleanups are done in the process,
and comments updated to reflect these changes.
Reviewed by: bz
Approved by: re (vimage blanket)
a device pager (OBJT_DEVICE) object in that it uses fictitious pages to
provide aliases to other memory addresses. The primary difference is that
it uses an sglist(9) to determine the physical addresses for a given offset
into the object instead of invoking the d_mmap() method in a device driver.
Reviewed by: alc
Approved by: re (kensmith)
MFC after: 2 weeks
On some ARM variations CPU func dispatcher has the D-cache invalidate method
point to write-back invalidate, which is wrong, and can lead to a crash/panic
on affected platforms.
Spotted by: HPS
Reviewed by: cognet
Approved by: re (kib)
a) nocache-remap problem
When a page is remapped into a non-cacheable virtual memory region there
was no associated write-back invalidate operation performed. We remove
writeback of the original buffer size from bus_dmamem_alloc() and add
appropriate L1/L2 flush operation.
b) missing write-back invalidate operation
In pmap_kremove a page is removed so we must do a write-back
invalidate operation aligned to the page virtual address.
Submitted by: Michal Hajduk
Reviewed by: Mark Tinguely, rpaulo, stas
Approved by: re (kib)
Obtained from: Semihalf