known samples of broken chipsets that needed mixed mode in the first place
are so broken (ie: locks up) that we can't use IO APIC mode at all and it
needs to be turned off in the bios. So, the MIXED_MODE penalty on the
good chipsets gained nothing.
Approved by: re (scottl)
- turn on SMP in generic
- add 'device atpic' - this is unconditional on i386, but certain nvidia
based systems need to disable acpi because the reference bios seems to be
hosed. If acpi is disabled, we won't find the apic. amd64 has the
mptable code in a seperate compile option as well.
- turn sym back on, it doesn't fail to compile anymore.
Approved by: re
of "dumb" PCI-based serial/parallel boards get a hint how to enable
them.
I wasn't sure about the ia64, pc98, powerpc, and sparc64 archs whether
they'd support puc(4) or not.
rl(4) driver and put it in a new re(4) driver. The re(4) driver shares
the if_rlreg.h file with rl(4) but is a separate module. (Ultimately
I may change this. For now, it's convenient.)
rl(4) has been modified so that it will never attach to an 8139C+
chip, leaving it to re(4) instead. Only re(4) has the PCI IDs to
match the 8169/8169S/8110S gigE chips. if_re.c contains the same
basic code that was originally bolted onto if_rl.c, with the
following updates:
- Added support for jumbo frames. Currently, there seems to be
a limit of approximately 6200 bytes for jumbo frames on transmit.
(This was determined via experimentation.) The 8169S/8110S chips
apparently are limited to 7.5K frames on transmit. This may require
some more work, though the framework to handle jumbo frames on RX
is in place: the re_rxeof() routine will gather up frames than span
multiple 2K clusters into a single mbuf list.
- Fixed bug in re_txeof(): if we reap some of the TX buffers,
but there are still some pending, re-arm the timer before exiting
re_txeof() so that another timeout interrupt will be generated, just
in case re_start() doesn't do it for us.
- Handle the 'link state changed' interrupt
- Fix a detach bug. If re(4) is loaded as a module, and you do
tcpdump -i re0, then you do 'kldunload if_re,' the system will
panic after a few seconds. This happens because ether_ifdetach()
ends up calling the BPF detach code, which notices the interface
is in promiscuous mode and tries to switch promisc mode off while
detaching the BPF listner. This ultimately results in a call
to re_ioctl() (due to SIOCSIFFLAGS), which in turn calls re_init()
to handle the IFF_PROMISC flag change. Unfortunately, calling re_init()
here turns the chip back on and restarts the 1-second timeout loop
that drives re_tick(). By the time the timeout fires, if_re.ko
has been unloaded, which results in a call to invalid code and
blows up the system.
To fix this, I cleared the IFF_UP flag before calling ether_ifdetach(),
which stops the ioctl routine from trying to reset the chip.
- Modified comments in re_rxeof() relating to the difference in
RX descriptor status bit layout between the 8139C+ and the gigE
chips. The layout is different because the frame length field
was expanded from 12 bits to 13, and they got rid of one of the
status bits to make room.
- Add diagnostic code (re_diag()) to test for the case where a user
has installed a broken 32-bit 8169 PCI NIC in a 64-bit slot. Some
NICs have the REQ64# and ACK64# lines connected even though the
board is 32-bit only (in this case, they should be pulled high).
This fools the chip into doing 64-bit DMA transfers even though
there is no 64-bit data path. To detect this, re_diag() puts the
chip into digital loopback mode and sets the receiver to promiscuous
mode, then initiates a single 64-byte packet transmission. The
frame is echoed back to the host, and if the frame contents are
intact, we know DMA is working correctly, otherwise we complain
loudly on the console and abort the device attach. (At the moment,
I don't know of any way to work around the problem other than
physically modifying the board, so until/unless I can think of a
software workaround, this will have do to.)
- Created re(4) man page
- Modified rlphy.c to allow re(4) to attach as well as rl(4).
Note that this code works for the sample 8169/Marvell 88E1000 NIC
that I have, but probably won't work for the 8169S/8110S chips.
RealTek has sent me some sample NICs, but they haven't arrived yet.
I will probably need to add an rlgphy driver to handle the on-board
PHY in the 8169S/8110S (it needs special DSP initialization).
stolen from the ia64/ia32 code (indeed there was a repocopy), but I've
redone the MD parts and added and fixed a few essential syscalls. It
is sufficient to run i386 binaries like /bin/ls, /usr/bin/id (dynamic)
and p4. The ia64 code has not implemented signal delivery, so I had
to do that.
Before you say it, yes, this does need to go in a common place. But
we're in a freeze at the moment and I didn't want to risk breaking ia64.
I will sort this out after the freeze so that the common code is in a
common place.
On the AMD64 side, this required adding segment selector context switch
support and some other support infrastructure. The %fs/%gs etc code
is hairy because loading %gs will clobber the kernel's current MSR_GSBASE
setting. The segment selectors are not used by the kernel, so they're only
changed at context switch time or when changing modes. This still needs
to be optimized.
Approved by: re (amd64/* blanket)
a heavily stripped down FreeBSD/i386 (brutally stripped down actually) to
attempt to get a stable base to start from. There is a lot missing still.
Worth noting:
- The kernel runs at 1GB in order to cheat with the pmap code. pmap uses
a variation of the PAE code in order to avoid having to worry about 4
levels of page tables yet.
- It boots in 64 bit "long mode" with a tiny trampoline embedded in the
i386 loader. This simplifies locore.s greatly.
- There are still quite a few fragments of i386-specific code that have
not been translated yet, and some that I cheated and wrote dumb C
versions of (bcopy etc).
- It has both int 0x80 for syscalls (but using registers for argument
passing, as is native on the amd64 ABI), and the 'syscall' instruction
for syscalls. int 0x80 preserves all registers, 'syscall' does not.
- I have tried to minimize looking at the NetBSD code, except in a couple
of places (eg: to find which register they use to replace the trashed
%rcx register in the syscall instruction). As a result, there is not a
lot of similarity. I did look at NetBSD a few times while debugging to
get some ideas about what I might have done wrong in my first attempt.
ethernet controller. The driver has been tested with the LinkSys
USB200M adapter. I know for a fact that there are other devices out
there with this chip but don't have all the USB vendor/device IDs.
Note: I'm not sure if this will force the driver to end up in the
install kernel image or not. Special magic needs to be done to exclude
it to keep the boot floppies from bloating again, someone please
advise.
Fixed memory leak in the "nodevice" option implementation.
Use these instead of sed(1) in MD NOTES.
Use a single makefile (sys/conf/makeLINT.mk) to generate
LINT for all architectures. (Previous versions missed
the LINT dependency on Makefile, and i386 version also
missed the dependency on ${NOTES}.)
Fixed bugs in the previous NOTES conversion using the
"nodevice" token and sed(1):
- i386 LINT lost "device pst".
- pc98 LINT lost SC_*, MAXCONS and KBD_DISABLE_KEYMAP_LOAD
options, and got needless DPT_* options.
- Added nooptions PPC_DEBUG, PPC_PROBE_CHIPSET, KBD_INSTALL_CDEV
to sparc64 LINT so that it has a chance to config(8).
This basically returns us to where we were before.