ever working correctly: the code was linking the QHs together but
then immediately overwriting the "next" pointers. Oops. Also
initialise qh_endphub, since the EHCI spec says that we should
always set the pipe multiplier field to something sensible.
This appears to make basic split transactions work, so enable split
transactions for control, bulk and interrupt pipes (split isochronous
transfers are not yet implemented). It should now be possible to
use USB1 devices even when they are connected through a USB2 hub.
particularly good reason to do this, except that __strong_reference
does type checking, whereas __weak_reference does not.
On Alpha, the compiler won't accept a 'long double' parameter in
place of a 'double' parameter even thought the two types are
identical.
seem to be necessary anymore, and it prevents tasting a valid drive
when booting with geom_vinum already loaded, since SCSI disks set their
sectorsize not until first opening them.
that is now used for both the 'M'/'N' branch and the 'S' branch of
the switch statement into a common scope.
Patch: 7.102-105
Submitted by: Max Okumoto <okumoto@ucsd.edu>
from an mbuf into the fxp_encap() function, as done in other drivers.
- Don't waste time calling bus_dmamap_load_mbuf() if we know the mbuf
chain is too long to fit in a TX descriptor, call m_defrag() first.
- Convert fxp(4) to use bus_dmamap_load_mbuf_sg().
initializing the sysctl mibs data before actually using them.
The original patchset (which is the actual version that is running
on my testboxes) have checked whether all of these sysctls and
refuses to do background fsck if we don't have them. Kirk has
pointed out that refusing running fsck on old kernels is pointless,
as old kernels will recompute the summary at mount time, so I
have removed these checks.
Unfortunatelly, as the checks will initialize the mib values of
those sysctl's, and which are vital for the runtime summary
adjustment to work, we can not simply remove the check, which
will lead to problem when running background fsck over a dirty
volume. Add these checks in a different way: give a warning rather
than refusing to work, and complain if the functionality is not
available when adjustments are necessary.
Noticed by: A power failure at my lab
Pointy hat: me
MFC After: 3 days
for the duration of the send() call. Such approach may be less than ideal
in threading environment, when several threads share the same socket and it
might happen that several of them are calling linux_send() at the same time
with and without SO_NOSIGPIPE set.
However, such race condition is very unlikely in practice, therefore this
change provides practical improvement compared to the previous behaviour.
PR: kern/76426
Submitted by: Steven Hartland <killing@multiplay.co.uk>
MFC after: 3 days
an invalid exception and return an NaN.
- If a long double has 113 bits of precision, implement fma in terms
of simple long double arithmetic instead of complicated double arithmetic.
- If a long double is the same as a double, alias fma as fmal.
identical to scalbnf, which is now aliased as ldexpf. Note that the
old implementations made the mistake of setting errno and were the
only libm routines to do so.
- Add nexttoward{,f,l} and nextafterl. On all platforms,
nexttowardl is an alias for nextafterl.
- Add fmal.
- Add man pages for new routines: fmal, nextafterl,
nexttoward{,f,l}, scalb{,l}nl.
Note that on platforms where long double is the same as double, we
generally just alias the double versions of the routines, since doing
so avoids extra work on the source code level and redundant code in
the binary. In particular:
ldbl53 ldbl64/113
fmal s_fma.c s_fmal.c
ldexpl s_scalbn.c s_scalbnl.c
nextafterl s_nextafter.c s_nextafterl.c
nexttoward s_nextafter.c s_nexttoward.c
nexttowardf s_nexttowardf.c s_nexttowardf.c
nexttowardl s_nextafter.c s_nextafterl.c
scalbnl s_scalbn.c s_scalbnl.c
sparc64's 128-bit long doubles.
- Define FP_FAST_FMAL for ia64.
- Prototypes for fmal, frexpl, ldexpl, nextafterl, nexttoward{,f,l},
scalblnl, and scalbnl.
- In scalbln and scalblnf, check the bounds of the second argument.
This is probably unnecessary, but strictly speaking, we should
report an error if someone tries to compute scalbln(x, INT_MAX + 1ll).
nexttowardl. These are not needed on machines where long doubles
look like IEEE-754 doubles, so the implementation only supports
the usual long double formats with 15-bit exponents.
Anything bizarre, such as machines where floating-point and integer
data have different endianness, will cause problems. This is the case
with big endian ia64 according to libc/ia64/_fpmath.h. Please contact
me if you managed to get a machine running this way.
that are intended to raise underflow and inexact exceptions.
- On systems where long double is the same as double, nextafter
should be aliased as nexttoward, nexttowardl, and nextafterl.
bit in a long double. For architectures that don't have such a bit,
LDBL_NBIT is 0. This makes it possible to say `mantissa & ~LDBL_NBIT'
in places that previously used an #ifdef to select the right expression.
The optimizer should dispense with the extra arithmetic when LDBL_NBIT
is 0 anyway.
- Add an XXX comment for the big endian case.
bit in a long double. For architectures that don't have such a bit,
LDBL_NBIT is 0. This makes it possible to say `mantissa & ~LDBL_NBIT'
in places that previously used an #ifdef to select the right expression.
The optimizer should dispense with the extra arithmetic when LDBL_NBIT
is 0.