Since there's no ACPI on PVH guests, we need to create a dummy CPU
device in order to fill the pcpu->pc_device field.
Sponsored by: Citrix Systems R&D
Approved by: gibbs
dev/xen/pvcpu/pvcpu.c:
- Create a dummy CPU device for PVH guests in order to fill the
per-cpu pc_device field.
conf/files:
- Add the pvcpu device to kernels using XEN or XENHVM options.
using a direct hook called from kern_vfs_bio_buffer_alloc().
Mark ffs_rawread.c as requiring both ffs and directio options to be
compiled into the kernel. Add ffs_rawread.c to the list of ufs.ko
module' sources.
In addition to stopping breaking the layering violation, it also
allows to link kernel when FFS is configured as module and DIRECTIO is
enabled.
One consequence of the change is that ffs_rawread.o is always linked
into the module regardless of the DIRECTIO option. This is similar to
the option QUOTA and ufs_quota.c.
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
- Update FDT file for BERI DE4 boards.
- Add needed kernel configuration keywords.
- Rename module to saf1761otg so that the device unit number does not
interfere with the hardware ID in dmesg.
Sponsored by: DARPA, AFRL
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.
For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.
With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.
trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43🆎cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43🆎cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...
Relnotes: Yes
Sponsored by: Chelsio Communications.
The CUSE library is a wrapper for the devfs kernel functionality which
is exposed through /dev/cuse . In order to function the CUSE kernel
code must either be enabled in the kernel configuration file or loaded
separately as a module. Currently none of the committed items are
connected to the default builds, except for installing the needed
header files. The CUSE code will be connected to the default world and
kernel builds in a follow-up commit.
The CUSE module was written by Hans Petter Selasky, somewhat inspired
by similar functionality found in FUSE. The CUSE library can be used
for many purposes. Currently CUSE is used when running Linux kernel
drivers in user-space, which need to create a character device node to
communicate with its applications. CUSE has full support for almost
all devfs functionality found in the kernel:
- kevents
- read
- write
- ioctl
- poll
- open
- close
- mmap
- private per file handle data
Requested by several people. Also see "multimedia/cuse4bsd-kmod" in
ports.
ismt(4) supports the SMBus Message Transport controller found on Intel
C2000 series (Avoton) and S1200 series (Briarwood) Atom SoCs.
Sponsored by: Intel
Intel 40G Ethernet Controller XL710 Family. This is
the core driver, a VF driver called i40evf, will be
following soon. Questions or comments to myself or
my co-developer Eric Joyner. Cheers!
This driver supports the low and high precision models (9 and 11 bits) and
it will auto-detect the both variants.
The driver expose the temperature registers (actual temperature, shutdown
and hysteresys temperature) and also the configuration register.
It was tested on FDT systems: RPi, BBB and on non-FDT systems: AR71xx, with
both, hardware i2c controllers (when available) and gpioiic(4).
This provides a simple and cheap way for verifying the i2c bus on embedded
systems.
cards. LSI has been maintaining this driver outside of the FreeBSD
tree. It overlaps support of ThunderBolt and Invader cards that mfi(4)
supports. By default mfi(4) will attach to cards. If the tunable:
hw.mfi.mrsas_enable=1
is set then mfi(4) will not probe and attach to these newer cards and
allow mrsas(4) to attach. So by default this driver will not effect
a FreeBSD system unless mfi(4) is removed from the kernel or the
tunable is enabled.
mrsas(4) attaches disks to the CAM layer so it depends on CAM and devices
show up as /dev/daX. mfiutil(8) does not work with mrsas. The FreeBSD
version of MegaCli and StorCli from LSI do work with mrsas. It appears
that StorCli only works with mrsas. MegaCli appears to work with mfi(4)
and mrsas(4).
It would be good to add mfiutil(4) support to mrsas, emulations modes,
kernel logging, device aliases to ease the transition between mfi(4)
and mrsas(4).
Style issues should be resolved by LSI when they get committers approved.
The plan is get this driver in FreeBSD 9.3 to improve HW support.
Thanks to LSI for developing, testing and working with FreeBSD to
make this driver co-exist in FreeBSD. This improves the overall
support of MegaRAID SAS.
Submitted by: Kashyap Desai <Kashyap.Desai@lsi.com>
Reviewed by: scottl
MFC after: 3 days
Sponsored by: LSI
This is derived from the mps(4) driver, but it supports only the 12Gb
IT and IR hardware including the SAS 3004, SAS 3008 and SAS 3108.
Some notes about this driver:
o The 12Gb hardware can do "FastPath" I/O, and that capability is included in
this driver.
o WarpDrive functionality has been removed, since it isn't supported in
the 12Gb driver interface.
o The Scatter/Gather list handling code is significantly different between
the 6Gb and 12Gb hardware. The 12Gb boards support IEEE Scatter/Gather
lists.
Thanks to LSI for developing and testing this driver for FreeBSD.
share/man/man4/mpr.4:
mpr(4) man page.
sys/dev/mpr/*:
mpr(4) driver files.
sys/modules/Makefile,
sys/modules/mpr/Makefile:
Add a module Makefile for the mpr(4) driver.
sys/conf/files:
Add the mpr(4) driver.
sys/amd64/conf/GENERIC,
sys/i386/conf/GENERIC,
sys/mips/conf/OCTEON1,
sys/sparc64/conf/GENERIC:
Add the mpr(4) driver to all config files that currently
have the mps(4) driver.
sys/ia64/conf/GENERIC:
Add the mps(4) and mpr(4) drivers to the ia64 GENERIC
config file.
sys/i386/conf/XEN:
Exclude the mpr module from building here.
Submitted by: Steve McConnell <Stephen.McConnell@lsi.com>
MFC after: 3 days
Tested by: Chris Reeves <chrisr@spectralogic.com>
Sponsored by: LSI, Spectra Logic
Relnotes: LSI 12Gb SAS driver mpr(4) added
kernel config file. If you also want to have a static DTB compiled
into your kernel, however, it cannot be a list. We have no mechanism
in the kernel for picking one, so that doesn't make sense and will
result in a compile-time error.
systems need fine-grained control over what's in and what's out.
That's ideal. For now, separate GPT labels from the rest and allow
g_label to be built with just GPT labels.
Obtained from: Juniper Networks, Inc.
My PCI RID changes somehow got intermixed with my PCI ARI patch when I
committed it. I may have accidentally applied a patch to a non-clean
working tree. Revert everything while I figure out what went wrong.
Pointy hat to: rstone
my tests, it is faster ~20%, even on an old IXP425 533MHz it is ~45%
faster... This is partly due to loop unrolling, so the code size does
significantly increase... I do plan on committing a version that
rolls up the loops again for smaller code size for embedded systems
where size is more important than absolute performance (it'll save ~6k
code)...
The kernel implementation is now shared w/ userland's libcrypt and
libmd...
We drop support for sha256 from sha2.c, so now sha2.c only contains
sha384 and sha512...
Reviewed by: secteam@
linking NIC Receive Side Scaling (RSS) to the network stack's
connection-group implementation. This prototype (and derived patches)
are in use at Juniper and several other FreeBSD-using companies, so
despite some reservations about its maturity, merge the patch to the
base tree so that it can be iteratively refined in collaboration rather
than maintained as a set of gradually diverging patch sets.
(1) Merge a software implementation of the Toeplitz hash specified in
RSS implemented by David Malone. This is used to allow suitable
pcbgroup placement of connections before the first packet is
received from the NIC. Software hashing is generally avoided,
however, due to high cost of the hash on general-purpose CPUs.
(2) In in_rss.c, maintain authoritative versions of RSS state intended
to be pushed to each NIC, including keying material, hash
algorithm/ configuration, and buckets. Provide software-facing
interfaces to hash 2- and 4-tuples for IPv4 and IPv6 using both
the RSS standardised Toeplitz and a 'naive' variation with a hash
efficient in software but with poor distribution properties.
Implement rss_m2cpuid()to be used by netisr and other load
balancing code to look up the CPU on which an mbuf should be
processed.
(3) In the Ethernet link layer, allow netisr distribution using RSS as
a source of policy as an alternative to source ordering; continue
to default to direct dispatch (i.e., don't try and requeue packets
for processing on the 'right' CPU if they arrive in a directly
dispatchable context).
(4) Allow RSS to control tuning of connection groups in order to align
groups with RSS buckets. If a packet arrives on a protocol using
connection groups, and contains a suitable hardware-generated
hash, use that hash value to select the connection group for pcb
lookup for both IPv4 and IPv6. If no hardware-generated Toeplitz
hash is available, we fall back on regular PCB lookup risking
contention rather than pay the cost of Toeplitz in software --
this is a less scalable but, at my last measurement, faster
approach. As core counts go up, we may want to revise this
strategy despite CPU overhead.
Where device drivers suitably configure NICs, and connection groups /
RSS are enabled, this should avoid both lock and line contention during
connection lookup for TCP. This commit does not modify any device
drivers to tune device RSS configuration to the global RSS
configuration; patches are in circulation to do this for at least
Chelsio T3 and Intel 1G/10G drivers. Currently, the KPI for device
drivers is not particularly robust, nor aware of more advanced features
such as runtime reconfiguration/rebalancing. This will hopefully prove
a useful starting point for refinement.
No MFC is scheduled as we will first want to nail down a more mature
and maintainable KPI/KBI for device drivers.
Sponsored by: Juniper Networks (original work)
Sponsored by: EMC/Isilon (patch update and merge)
AppleTalk was a network transport protocol for Apple Macintosh devices
in 80s and then 90s. Starting with Mac OS X in 2000 the AppleTalk was
a legacy protocol and primary networking protocol is TCP/IP. The last
Mac OS X release to support AppleTalk happened in 2009. The same year
routing equipment vendors (namely Cisco) end their support.
Thus, AppleTalk won't be supported in FreeBSD 11.0-RELEASE.
IPX was a network transport protocol in Novell's NetWare network operating
system from late 80s and then 90s. The NetWare itself switched to TCP/IP
as default transport in 1998. Later, in this century the Novell Open
Enterprise Server became successor of Novell NetWare. The last release
that claimed to still support IPX was OES 2 in 2007. Routing equipment
vendors (e.g. Cisco) discontinued support for IPX in 2011.
Thus, IPX won't be supported in FreeBSD 11.0-RELEASE.
This adds and enables the PV console used on XEN kernels to
GENERIC/XENHVM kernels in order for it to be used on PVH.
Approved by: gibbs
Sponsored by: Citrix Systems R&D
dev/xen/console/console.c:
- Define console_page.
- Move xc_printf debug function from i386 XEN code to generic console
code.
- Rework xc_printf.
- Use xen_initial_domain instead of open-coded checks for Dom0.
- Gate the attach of the PV console to PV(H) guests.
dev/xen/console/xencons_ring.c:
- Allow the PV Xen console to output earlier by directly signaling
the event channel in start_info if the event channel is not yet
initialized.
- Use HYPERVISOR_start_info instead of xen_start_info.
i386/include/xen/xen-os.h:
- Remove prototype for xc_printf since it's now declared in global
xen-os.h
i386/xen/xen_machdep.c:
- Remove previous version of xc_printf.
- Remove definition of console_page (now it's defined in the console
itself).
- Fix some printf formatting errors.
x86/xen/pv.c:
- Add some early boot debug messages using xc_printf.
- Set console_page based on the value passed in start_info.
xen/xen-os.h:
- Declare console_page and add prototype for xc_printf.
(1) Invoke cpp to bring in files via #include (although the old
/include/ stuff is supported still).
(2) bring in files from either vendor tree or freebsd-custom files
when building.
(3) move all dts* files from sys/boot/fdt/dts to
sys/boot/fdt/dts/${MACHINE} as appropriate.
(4) encode all the magic to do the build in sys/tools/fdt/make_dtb.sh
so that the different places in the tree use the exact same logic.
(5) switch back to gpl dtc by default. the bsdl one in the tree has
significant issues not easily addressed by those unfamiliar with
the code.
This is (almost!) enough to actually probe, attach, configure a default
port group and do some basic work. It's also totally hard-coded for
the Qualcomm Atheros DB120 board - it doesn't yet have any of the code
from OpenWRT which parses extra configuration data to know how to program
the switch. The LED stuff is also missing.
But, it's enough to facilitate board, PHY, switch and VLAN bringup,
so I am committing it now.
Tested:
* Qualcomm Atheros DB120
Obtained from: OpenWRT
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
describe GPIO bindings in the system.
Move the GPIOBUS lock macros to gpiobusvar.h as they are now shared between
the OFW and the non OFW versions of GPIO bus.
Export gpiobus_print_pins() so it can also be used on the OFW GPIO bus.
Approved by: adrian (mentor, implicit)
Useful for so-called USB tethering.
- Imported code from OpenBSD
- Adapted code to FreeBSD
- Removed some unused functions
- Fixed some buffer encoding and decoding issues
- Optimised data transport path a bit, by sending multiple packets at a time
- Increased receive buffer to 16K
Obtained from: OpenBSD
Requested by: eadler @
MFC after: 2 weeks
a sub-node of nexus (ofwbus) rather than direct attach under nexus. This
fixes FDT on x86 and will make coexistence with ACPI on ARM systems easier.
SPARC is unchanged.
Reviewed by: imp, ian
get the Routerboard 800 up and running with the vendor device tree. This
does not implement some BERI-specific features (which hopefully won't be
necessary soon), so move the old code to mips/beri, with a higher attach
priority when built, until MIPS interrupt domain support is rearranged.
drivers and their firmware were under active development, but those days
have passed. The firmware now exists in pre-compiled form, no longer
dependent on it's sources or on aicasm. If you wish to rebuild the
firmware from source, the glue still exists under the 'make firmware'
target in sys/modules/aic7xxx.
This also fixes the problem introduced with r257777 et al with building
kernels the old fashioned way in sys/$arch/compile/$CONFIG when the
ahc/ahd drivers were included.
related to setting up static device mappings. Since it was only used by
arm/mv/mv_pci.c, it's now just static functions within that file, plus
one public function that gets called only from arm/mv/mv_machdep.c.