difference between files.
For pc98, put x86/mp_x86.c into the same place as used by i386 file list.
Fix typo in comment.
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
Any sensible workflow will include a revision control system from which
to restore the old files if required. In normal usage, developers just
have to clean up the mess.
Reviewed by: jhb
Sponsored by: DARPA, AFRL
Differential Revision: https://reviews.freebsd.org/D7353
Set vm_guest to a new enum value (VM_GUEST_KVM) when kvm is detected and use
vm_guest in conditionals testing for KVM.
Also, fix a conditional checking if we're running in a VM which caught only
the generic VM case, but not more specific VMs (KVM, VMWare, etc.). (Spotted
by: vangyzen).
Differential revision: https://reviews.freebsd.org/D7172
Sponsored by: Dell Inc.
Approved by: kib (mentor), vangyzen (mentor)
Reviewed by: alc
MFC after: 4 weeks
If the hypervisor version is smaller than 4.6.0. Xen commits 74fd00 and
70a3cb are required on the hypervisor side for this to be fixed, and those
are only included in 4.6.0, so stay on the safe side and disable MSI-X
interrupt migration on anything older than 4.6.0.
It should not cause major performance degradation unless a lot of MSI-X
interrupts are allocated.
Sponsored by: Citrix Systems R&D
MFC after: 3 days
Reviewed by: jhb
Differential revision: https://reviews.freebsd.org/D7148
If tf_trapno contains garbage which appears to be equal to T_NMI,
e.g. due to thread previously entered kernel due to NMI, doreti
sequence skips ast, and does so until a trap or hardware interrupt
occur.
The visible effects of the issue are quite confusing. First, signals
delivery is postponed in observable ways. In particular, the
guarantee that unblocked async signals queue is flushed before a
return from syscall, is broken. Second, if there are pending signals,
all interruptible sleeps of the stuck thread are aborted immediately.
Since modern CPUs are relatively fast and tickless kernel generates
low interrupt rate, the faulty condition might exist for long time (in
an application time scale).
In collaboration with: pho
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
FreeBSD support NX bit on X86_64 processors out of the box, for i386 emulation
use READ_IMPLIES_EXEC flag, introduced in r302515.
While here move common part of mmap() and mprotect() code to the files in compat/linux
to reduce code dupcliation between Linuxulator's.
Reported by: Johannes Jost Meixner, Shawn Webb
MFC after: 1 week
XMFC with: r302515, r302516
In Linux if this flag is set, PROT_READ implies PROT_EXEC for mmap().
Linux/i386 set this flag automatically if the binary requires executable stack.
READ_IMPLIES_EXEC flag will be used in the next Linux mmap() commit.
mp_maxid or CPU_FOREACH() as appropriate. This fixes a number of places in
the kernel that assumed CPU IDs are dense in [0, mp_ncpus) and would try,
for example, to run tasks on CPUs that did not exist or to allocate too
few buffers on systems with sparse CPU IDs in which there are holes in the
range and mp_maxid > mp_ncpus. Such circumstances generally occur on
systems with SMT, but on which SMT is disabled. This patch restores system
operation at least on POWER8 systems configured in this way.
There are a number of other places in the kernel with potential problems
in these situations, but where sparse CPU IDs are not currently known
to occur, mostly in the ARM machine-dependent code. These will be fixed
in a follow-up commit after the stable/11 branch.
PR: kern/210106
Reviewed by: jhb
Approved by: re (glebius)
threads, to make it less confusing and using modern kernel terms.
Rename the functions to reflect current use of the functions, instead
of the historic KSE conventions:
cpu_set_fork_handler -> cpu_fork_kthread_handler (for kthreads)
cpu_set_upcall -> cpu_copy_thread (for forks)
cpu_set_upcall_kse -> cpu_set_upcall (for new threads creation)
Reviewed by: jhb (previous version)
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
Approved by: re (hrs)
Differential revision: https://reviews.freebsd.org/D6731
bus_get_cpus() returns a specified set of CPUs for a device. It accepts
an enum for the second parameter that indicates the type of cpuset to
request. Currently two valus are supported:
- LOCAL_CPUS (on x86 this returns all the CPUs in the package closest to
the device when DEVICE_NUMA is enabled)
- INTR_CPUS (like LOCAL_CPUS but only returns 1 SMT thread for each core)
For systems that do not support NUMA (or if it is not enabled in the kernel
config), LOCAL_CPUS fails with EINVAL. INTR_CPUS is mapped to 'all_cpus'
by default. The idea is that INTR_CPUS should always return a valid set.
Device drivers which want to use per-CPU interrupts should start using
INTR_CPUS instead of simply assigning interrupts to all available CPUs.
In the future we may wish to add tunables to control the policy of
INTR_CPUS (e.g. should it be local-only or global, should it ignore
SMT threads or not).
The x86 nexus driver exposes the internal set of interrupt CPUs from the
the x86 interrupt code via INTR_CPUS.
The ACPI bus driver and PCI bridge drivers use _PXM to return a suitable
LOCAL_CPUS set when _PXM exists and DEVICE_NUMA is enabled. They also and
the global INTR_CPUS set from the nexus driver with the per-domain set from
_PXM to generate a local INTR_CPUS set for child devices.
Compared to the r298933, this version uses 'struct _cpuset' in
<sys/bus.h> instead of 'cpuset_t' to avoid requiring <sys/param.h>
(<sys/_cpuset.h> still requires <sys/param.h> for MAXCPU even though
<sys/_bitset.h> does not after recent changes).
PCI-express HotPlug support is implemented via bits in the slot
registers of the PCI-express capability of the downstream port along
with an interrupt that triggers when bits in the slot status register
change.
This is implemented for FreeBSD by adding HotPlug support to the
PCI-PCI bridge driver which attaches to the virtual PCI-PCI bridges
representing downstream ports on HotPlug slots. The PCI-PCI bridge
driver registers an interrupt handler to receive HotPlug events. It
also uses the slot registers to determine the current HotPlug state
and drive an internal HotPlug state machine. For simplicty of
implementation, the PCI-PCI bridge device detaches and deletes the
child PCI device when a card is removed from a slot and creates and
attaches a PCI child device when a card is inserted into the slot.
The PCI-PCI bridge driver provides a bus_child_present which claims
that child devices are present on HotPlug-capable slots only when a
card is inserted. Rather than requiring a timeout in the RC for
config accesses to not-present children, the pcib_read/write_config
methods fail all requests when a card is not present (or not yet
ready).
These changes include support for various optional HotPlug
capabilities such as a power controller, mechanical latch,
electro-mechanical interlock, indicators, and an attention button.
It also includes support for devices which require waiting for
command completion events before initiating a subsequent HotPlug
command. However, it has only been tested on ExpressCard systems
which support surprise removal and have none of these optional
capabilities.
PCI-express HotPlug support is conditional on the PCI_HP option
which is enabled by default on arm64, x86, and powerpc.
Reviewed by: adrian, imp, vangyzen (older versions)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D6136
Not sure why the platform hypercall was disabled on i386, just enable it in
order to fix compilation of the PV timer on i386.
Sponsored by: Citrix Systems R&D
driver is (or behaves identically to) /dev/mem. Remove the D_MEM flag
from random drivers.
Note that currently the D_MEM flag does not affect any behaviour, but
this going to change in the next commit.
Noted and reviewed by: alc
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
X-Differential revision: https://reviews.freebsd.org/D6149
rounddown2 tends to produce longer lines than the original code
and when the code has a high indentation level it was not really
advantageous to do the replacement.
This tries to strike a balance between readability using the macros
and flexibility of having the expressions, so not everything is
converted.
Submitted by: Jun Su <junsu microsoft com>
Reviewed by: jhb, kib, sephe
Sponsored by: Microsoft OSTC
Differential Revision: https://reviews.freebsd.org/D5910
doreti provides the common code path for returning from interrupt
andlers on x86. Exposing doreti as a global symbol allows kernel
modules to include low-level interrupt handlers instead of requiring
all low-level handlers to be statically compiled into the kernel.
Submitted by: Howard Su <howard0su@gmail.com>
Reviewed by: kib
Some BIOSes disable AMD Topology extension on AMD Family 15h notebook
processors. We re-enable the extension, so that we can properly discover
core and cache topology. Linux seems to do the same.
Reported by: Johannes Dieterich <dieterich.joh@gmail.com>
Reviewed by: jhb, kib
Tested by: Johannes Dieterich <dieterich.joh@gmail.com>
(earlier version)
MFC after: 3 weeks
Differential Revision: https://reviews.freebsd.org/D5883
kern.features.linux: 1 meaning linux 32 bits binaries are supported
kern.features.linux64: 1 meaning linux 64 bits binaries are supported
The goal here is to help 3rd party applications (including ports) to determine
if the host do support linux emulation
Reviewed by: dchagin
MFC after: 1 week
Relnotes: yes
Differential Revision: D5830
Simplify and unify placeholder type definitions.
Reviewed by: jhb
Sponsored by: The FreeBSD Foundation
Differential revision: https://reviews.freebsd.org/D5771
This moves the enabling of interrupts slightly earlier (the old location
was still before devices were enumerated and probed) and does it in the
interrupt code (rather than in the device configuration code). This
also avoids tripping over an assertion on the first TLB shootdown with
earlier AP startup.
Reviewed by: kib
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D5710
non-multiple of 64 bytes. Thereafter, the user state save area is
misaligned, which triggers assertion in the debugging kernels, or
segmentation violation on accesses for non-debugging configs.
Force the desired alignment of the user save area as the fix
(workaround is to disable bit 9 in the hw.xsave_mask loader tunable).
This correction is required for booting on the upcoming Intel' Purley
platform.
Reported and tested by: "Pieper, Jeffrey E" <jeffrey.e.pieper@intel.com>,
jimharris
Sponsored by: The FreeBSD Foundation
MFC after: 3 days
Most calls to bus_alloc_resource() use "anywhere" as the range, with a given
count. Migrate these to use the new bus_alloc_resource_anywhere() API.
Reviewed by: jhb
Differential Revision: https://reviews.freebsd.org/D5370
POSIX requires these members to be of type void * rather than the
char * inherited from 4BSD. NetBSD and OpenBSD both changed their
fields to void * back in 1998. No new build failures were reported
via an exp-run.
PR: 206503 (exp-run)
Reviewed by: kib
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D5092
AT_SECURE auxv entry has been added to the Linux 2.5 kernel to pass a
boolean flag indicating whether secure mode should be enabled. 1 means
that the program has changes its credentials during the execution.
Being exported AT_SECURE used by glibc issetugid() call.
Submitted by: imp, dchagin
Security: FreeBSD-SA-16:10.linux
Security: CVE-2016-1883
The set_robust_list system call request the kernel to record the head
of the list of robust futexes owned by the calling thread. The head
argument is the list head to record.
The get_robust_list system call should return the head of the robust
list of the thread whose thread id is specified in pid argument.
The list head should be stored in the location pointed to by head
argument.
In contrast, our implemenattion of get_robust_list system call copies
the known portion of memory pointed by recorded in set_robust_list
system call pointer to the head of the robust list to the location
pointed by head argument.
So, it is possible for a local attacker to read portions of kernel
memory, which may result in a privilege escalation.
Submitted by: mjg
Security: SA-16:03.linux