the MTRR Base/Mask registers. If you use the documented algorithm in the
systems programming guide, you'll get a GPF. The only thing that has
prevented this so far is that the bios pre-sets some MTRR entries which
we mis-interpreted sufficiently to fool the memcontrol interface into
thinking all the address space was taken and therefore rejected XFree86's
requests. However, not all bioses do this.. You get an insta-panic in
that case. Grrr. A better fix (dynamic mask) will happen by 5.3/5-stable
so that we automatically adapt to more than 40 physical bits.
Approved by: re (scottl)
very early (SI_SUB_TUNABLES - 1) and is responsible for setting mp_maxid.
cpu_mp_probe() is now called at SI_SUB_CPU and determines if SMP is
actually present and sets mp_ncpus and all_cpus. Splitting these up
allows an architecture to probe CPUs later than SI_SUB_TUNABLES by just
setting mp_maxid to MAXCPU in cpu_mp_setmaxid(). This could allow the
CPU probing code to live in a module, for example, since modules
sysinit's in modules cannot be invoked prior to SI_SUB_KLD. This is
needed to re-enable the ACPI module on i386.
- For the alpha SMP probing code, use LOCATE_PCS() instead of duplicating
its contents in a few places. Also, add a smp_cpu_enabled() function
to avoid duplicating some code. There is room for further code
reduction later since much of this code is also present in cpu_mp_start().
- All archs besides i386 still set mp_maxid to the same values they set it
to before this change. i386 now sets mp_maxid to MAXCPU.
Tested on: alpha, amd64, i386, ia64, sparc64
Approved by: re (scottl)
known samples of broken chipsets that needed mixed mode in the first place
are so broken (ie: locks up) that we can't use IO APIC mode at all and it
needs to be turned off in the bios. So, the MIXED_MODE penalty on the
good chipsets gained nothing.
Approved by: re (scottl)
the compiler having to parse and optimize the PCPU_GET(curthread) so often.
__curthread() is an inline optimized version of PCPU_GET(curthread) that
knows that pc_curthread is at offset zero in the pcpu struct. Add a
CTASSERT() to catch any possible changes to this. This accounts for
just over a 1% wall clock speedup for total kernel compile/link time,
and 20% compile time speedup on some specific files depending on which
compile options are used.
Approved by: re (jhb)
- turn on SMP in generic
- add 'device atpic' - this is unconditional on i386, but certain nvidia
based systems need to disable acpi because the reference bios seems to be
hosed. If acpi is disabled, we won't find the apic. amd64 has the
mptable code in a seperate compile option as well.
- turn sym back on, it doesn't fail to compile anymore.
Approved by: re
- This is heavily derived from John Baldwin's apic/pci cleanup on i386.
- I have completely rewritten or drastically cleaned up some other parts.
(in particular, bootstrap)
- This is still a WIP. It seems that there are some highly bogus bioses
on nVidia nForce3-150 boards. I can't stress how broken these boards
are. I have a workaround in mind, but right now the Asus SK8N is broken.
The Gigabyte K8NPro (nVidia based) is also mind-numbingly hosed.
- Most of my testing has been with SCHED_ULE. SCHED_4BSD works.
- the apic and acpi components are 'standard'.
- If you have an nVidia nForce3-150 board, you are stuck with 'device
atpic' in addition, because they somehow managed to forget to connect the
8254 timer to the apic, even though its in the same silicon! ARGH!
This directly violates the ACPI spec.
physical mapping.
- Move the sf_buf API to its own header file; make struct sf_buf's
definition machine dependent. In this commit, we remove an
unnecessary field from struct sf_buf on the alpha, amd64, and ia64.
Ultimately, we may eliminate struct sf_buf on those architecures
except as an opaque pointer that references a vm page.
longer uses these interrupt vectors for its ISA interrupt pins, so these
entries will not be overwritten. If we get a spurious interrupt from the
ATPIC when using the APIC, it will be treated as a stray interrupt instead
of causing a panic.
- Move the IPI and local APIC interrupt vectors up into the 0xf0 - 0xff
range. The pmap lazyfix IPI was reordered down next to the TLB
shootdowns to avoid conflicting with the spurious interrupt vector.
- Move the base of APIC interrupts up 16 so that the first 16 APIC
interrupts do not overlap the vectors used by the ATPIC.
- Remove bogus interrupt vector reservations for LINT[01].
- Now that 0xc0 - 0xef are available, use them for device interrupts.
This increases the number of APIC device interrupts to 191.
- Increase the system-wide number of global interrupts to 191 to catch up
to more APIC interrupts.
Requested by: peter (2)
vector stubs and into the C functions they call.
- Move disabling and EOIing of interrupt sources out of PIC driver entry
points and into intr_execute_handlers(). Intr_execute_handlers() only
disables a source for an interrupt if it is a stray interrupt or has
threaded handlers. Sources with fast handlers no longer disable (mask)
the source while executing the handlers.
- Move the setting of clkintr_pending into intr_execute_handlers() and set
the variable for any interrupt source with a vector of 0. (Should only
be true for IRQ 0.) This fixes clkintr_pending in the NO_MIXED_MODE
case.
- Implement lapic_eoi() and use it to implement ioapic_eoi_source().
- Rename atpic_sched_ithd() to atpic_handle_intr() since it is used to
handle all atpic interrupts and not just threaded ones.
Inspired by: peter's changes to amd64 in p4 (1)
Requested by: bde (2)
interrupt such as IRQ 22 or 19. However, the ACPI BIOS still routes
interrupts from some PCI devices to the same intpin calling the pin
IRQ 22. Thus, ACPI expects to address a single interrupt source via two
different names. To work around this, if the SCI is remapped to a non-ISA
interrupt (i.e., greater than 15), then we use
acpi_OverrideInterruptLevel() function to tell ACPI to use IRQ 22 or 19
rather than IRQ 9 for the SCI.
Previously we would change IRQ 22 or 19's name to IRQ 9 when we encountered
such an Interrupt Source Override entry in the MADT which routed the SCI
properly but left PCI devices mapped to IRQ 22 or 19 w/o a routable
interrupt.
Tested by: sos
should now only have HTT CPUs if they have explicitly asked for them
either by enabling HyperThreading in the BIOS or by using the
MPTABLE_FORCE_HTT kernel option.
should only be used if they are enabled in the BIOS. Now that we support
enumerating CPUs using the ACPI MADT, any HTT machine using ACPI should
respect the BIOS setting. For HTT machines with ACPI disabled in the
kernel, the MPTABLE_FORCE_HTT kernel option can be used to try to probe HTT
CPUs like have done in the past for the MP Table case. This option should
only be enabled if HTT is enabled in the BIOS.
Since all callers either passed 0 or 1 for clear_ret, define bit 0 in
the flags for use as clear_ret. Reserve bits 1, 2 and 3 for use by MI
code for possible (but unlikely) future use. The remaining bits are for
use by MD code.
This change is triggered by a need on ia64 to have another knob for
get_mcontext().
is highly MD in an emulation environment since it operates on the host
environment. Although the setregs functions are really for exec support
rather than signals, they deal with the same sorts of context and include
files. So I put it there rather than create yet another file.