On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
Most calls to bus_alloc_resource() use "anywhere" as the range, with a given
count. Migrate these to use the new bus_alloc_resource_anywhere() API.
Reviewed by: jhb
Differential Revision: https://reviews.freebsd.org/D5370
Summary:
Migrate to using the semi-opaque type rman_res_t to specify rman resources. For
now, this is still compatible with u_long.
This is step one in migrating rman to use uintmax_t for resources instead of
u_long.
Going forward, this could feasibly be used to specify architecture-specific
definitions of resource ranges, rather than baking a specific integer type into
the API.
This change has been broken out to facilitate MFC'ing drivers back to 10 without
breaking ABI.
Reviewed By: jhb
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5075
to kern/subr_bus.c. Simplify this function so that it no longer
depends on malloc() to execute. Identify a few other places where
it makes sense to use device_delete_all_children().
MFC after: 1 week
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.
Tested by: no one :-(
other fixes:
- Add pointers back to device_t objects in softc structures instead
of storing the unit and using devclass_get_device().
- Add 'lpbb', 'pcf', 'pps', and 'vpo' child devices to every 'ppbus' device
instead of just the first one.
- Store softc pointers in si_drv1 of character devices instead of
pulling the unit number from the minor number and using
devclass_get_softc() and devclass_get_device().
- Store the LP_BYPASS flag in si_drv2 instead of encoding it in the minor
number.
- Destroy character devices for lpt(4) when detaching the device.
- Use bus_print_child_footer() instead of duplicating it in
ppbus_print_child() and fix ppbus_print_child()'s return value.
- Remove unused AVM ivar from ppbus.
- Don't store the 'mode' ivar in the ppbus ivars since we always fetch it
from the parent anyway.
- Try to detach all the child devices before deleting them in
ppbus_detach().
- Use pause() instead of a tsleep() on a dummy address when polling the
ppbus.
- Use if_printf() and device_printf() instead of explicit names with unit
numbers.
Silence on: current@
- Retire IVARs for passing IRQs around. Instead, ppbus and ppc now allow
child devices to access the interrupt by via a rid 0 IRQ resource
using bus_alloc_resource_any().
- ppc creates its own interrupt event to manage the interrupt handlers of
child devices. ppc does not allow child devices to use filters. It
could allow this if needed, but none of the current drivers use them
and it adds a good bit of complication. It uses
intr_event_execute_handlers() to fire the child device interrupt handlers
from its threaded interrupt handler.
- Remove the ppbus_dummy_intr() hack. Now the ppc device always has an
interrupt handler registered and we no longer bounce all the way up to
nexus to manage adding/removing ppbus child interrupt handlers. Instead,
the child handlers are added and removed to the private interrupt event
in the ppc device.
triggers a KASSERT) or local variables. In the case of kern_ndis, the
tsleep() actually used a common sleep address (curproc) making it
susceptible to a premature wakeup.
o Properly use rman(9) to manage resources. This eliminates the
need to puc-specific hacks to rman. It also allows devinfo(8)
to be used to find out the specific assignment of resources to
serial/parallel ports.
o Compress the PCI device "database" by optimizing for the common
case and to use a procedural interface to handle the exceptions.
The procedural interface also generalizes the need to setup the
hardware (program chipsets, program clock frequencies).
o Eliminate the need for PUC_FASTINTR. Serdev devices are fast by
default and non-serdev devices are handled by the bus.
o Use the serdev I/F to collect interrupt status and to handle
interrupts across ports in priority order.
o Sync the PCI device configuration to include devices found in
NetBSD and not yet merged to FreeBSD.
o Add support for Quatech 2, 4 and 8 port UARTs.
o Add support for a couple dozen Timedia serial cards as found
in Linux.
end for isa(4).
o Add a seperate bus frontend for acpi(4) and allow ISA DMA for
it when ISA is configured in the kernel. This allows acpi(4)
attachments in non-ISA configurations, as is possible for ia64.
o Add a seperate bus frontend for pci(4) and detect known single
port parallel cards.
o Merge PC98 specific changes under pc98/cbus into the MI driver.
The changes are minor enough for conditional compilation and
in this form invites better abstraction.
o Have ppc(4) usabled on all platforms, now that ISA specifics
are untangled enough.
interrupt handlers rather than BUS_SETUP_INTR() and BUS_TEARDOWN_INTR().
Uses of the BUS_*() versions in the implementation of foo_intr methods
in bus drivers were not changed. Mostly this just means that some
drivers might start printing diagnostic messages like [FAST] when
appropriate as well as honoring mpsafenet=0.
- Fix two more of the ppbus drivers' identify routines to function
correctly in the mythical case of a machine with more than one ppbus.
- Move isa/ppc* to sys/dev/ppc (repo-copy)
- Add an attachment method to ppc for puc
- In puc we need to walk the chain of parents.
Still to do, is to make ppc(4) & puc(4) work on other platforms. Testers
wanted.
PR: 38372 (in spirit done differently)
Verified by: Make universe (if I messed up a platform please fix)
even if mode PS/2 is forced with bootflags. As a matter of fact,
chipsets needs some extra configuration for accessing PS/2 mode
from ECP. The current patch is only relevant for generic chipsets
since specific code is supposed to deal with this during detection.