The entire world seems to use the non-standard TIOCSCTTY ioctl to make a
TTY a controlling terminal of a session. Even though tcsetsid(3) is also
non-standard, I think it's a lot better to use in our own source code,
mainly because it's similar to tcsetpgrp(), tcgetpgrp() and tcgetsid().
I stole the idea from QNX. They do it the other way around; their
TIOCSCTTY is just a wrapper around tcsetsid(). tcsetsid() then calls
into an IPC framework.
dlfunc() called dlsym() to do the work, and dlsym() determines the dso
that originating the call by the return address. Due to this, dlfunc()
operated as if the caller is always the libc.
To fix this, move the dlfunc() to rtld, where it can call the internal
implementation of dlsym, and still correctly fetch return address.
Provide usual weak stub for the symbol from libc for static binaries.
dlfunc is put to FBSD_1.0 symver namespace in the ld.so export to
override dlfunc@FBSD_1.0 weak symbol, exported by libc.
Reported, analyzed and tested by: Tijl Coosemans <tijl ulyssis org>
PR: standards/133339
Reviewed by: kan
A more elegant way of obtaining a name of a character device by its file
descriptor on FreeBSD, is to use the FIODGNAME ioctl. Because a valid
file descriptor implies a file descriptor is visible in /dev, it will
always resolve a valid device name.
I'm adding a more friendly wrapper for this ioctl, called fdevname(). It
is a lot easier to use than devname() and also has better error
handling. When a device name cannot be resolved, it will just return
NULL instead of a generated device name that makes no sense.
Discussed with: kib
Adding exevpe() has caused some ports to break. Even though execvpe() is
a useful routine, it does not conform to any standards.
This patch is a little bit different from the patch sent to the mailing
list. I forgot to remove execvpe from the Symbol.map (which does not
seem to miscompile libc, though).
Reviewed by: davidxu
Approved by: philip
can be used as replacements for exec/fork in a lot of cases. This
change also added execvpe() which allows environment variable
PATH to be used for searching executable file, it is used for
implementing posix_spawnp().
PR: standards/122051
deals with the usual __opendir2() calls, and the rest part with an interface
translator to expose fdopendir(3) functionality. Manual page was obtained from
kib@'s work for *at(2) system calls.
live in libm, while modf() lives in libc due to historical
mistakes. I'm claiming in the manpage that they all live in libm,
since programmers should not rely on the mistake.
fields in FTS and FTSENT structs being too narrow. In addition,
the narrow types creep from there into fts.c. As a result, fts(3)
consumers, e.g., find(1) or rm(1), can't handle file trees an ordinary
user can create, which can have security implications.
To fix the historic implementation of fts(3), OpenBSD and NetBSD
have already changed <fts.h> in somewhat incompatible ways, so we
are free to do so, too. This change is a superset of changes from
the other BSDs with a few more improvements. It doesn't touch
fts(3) functionality; it just extends integer types used by it to
match modern reality and the C standard.
Here are its points:
o For C object sizes, use size_t unless it's 100% certain that
the object will be really small. (Note that fts(3) can construct
pathnames _much_ longer than PATH_MAX for its consumers.)
o Avoid the short types because on modern platforms using them
results in larger and slower code. Change shorts to ints as
follows:
- For variables than count simple, limited things like states,
use plain vanilla `int' as it's the type of choice in C.
- For a limited number of bit flags use `unsigned' because signed
bit-wise operations are implementation-defined, i.e., unportable,
in C.
o For things that should be at least 64 bits wide, use long long
and not int64_t, as the latter is an optional type. See
FTSENT.fts_number aka FTS.fts_bignum. Extending fts_number `to
satisfy future needs' is pointless because there is fts_pointer,
which can be used to link to arbitrary data from an FTSENT.
However, there already are fts(3) consumers that require fts_number,
or fts_bignum, have at least 64 bits in it, so we must allow for them.
o For the tree depth, use `long'. This is a trade-off between making
this field too wide and allowing for 64-bit inode numbers and/or
chain-mounted filesystems. On the one hand, `long' is almost
enough for 32-bit filesystems on a 32-bit platform (our ino_t is
uint32_t now). On the other hand, platforms with a 64-bit (or
wider) `long' will be ready for 64-bit inode numbers, as well as
for several 32-bit filesystems mounted one under another. Note
that fts_level has to be signed because -1 is a magic value for it,
FTS_ROOTPARENTLEVEL.
o For the `nlinks' local var in fts_build(), use `long'. The logic
in fts_build() requires that `nlinks' be signed, but our nlink_t
currently is uint16_t. Therefore let's make the signed var wide
enough to be able to represent 2^16-1 in pure C99, and even 2^32-1
on a 64-bit platform. Perhaps the logic should be changed just
to use nlink_t, but it can be done later w/o breaking fts(3) ABI
any more because `nlinks' is just a local var.
This commit also inludes supporting stuff for the fts change:
o Preserve the old versions of fts(3) functions through libc symbol
versioning because the old versions appeared in all our former releases.
o Bump __FreeBSD_version just in case. There is a small chance that
some ill-written 3-rd party apps may fail to build or work correctly
if compiled after this change.
o Update the fts(3) manpage accordingly. In particular, remove
references to fts_bignum, which was a FreeBSD-specific hack to work
around the too narrow types of FTSENT members. Now fts_number is
at least 64 bits wide (long long) and fts_bignum is an undocumented
alias for fts_number kept around for compatibility reasons. According
to Google Code Search, the only big consumers of fts_bignum are in
our own source tree, so they can be fixed easily to use fts_number.
o Mention the change in src/UPDATING.
PR: bin/104458
Approved by: re (quite a while ago)
Discussed with: deischen (the symbol versioning part)
Reviewed by: -arch (mostly silence); das (generally OK, but we didn't
agree on some types used; assuming that no objections on
-arch let me to stick to my opinion)
implement shm_open(2) and shm_unlink(2) in the kernel:
- Each shared memory file descriptor is associated with a swap-backed vm
object which provides the backing store. Each descriptor starts off with
a size of zero, but the size can be altered via ftruncate(2). The shared
memory file descriptors also support fstat(2). read(2), write(2),
ioctl(2), select(2), poll(2), and kevent(2) are not supported on shared
memory file descriptors.
- shm_open(2) and shm_unlink(2) are now implemented as system calls that
manage shared memory file descriptors. The virtual namespace that maps
pathnames to shared memory file descriptors is implemented as a hash
table where the hash key is generated via the 32-bit Fowler/Noll/Vo hash
of the pathname.
- As an extension, the constant 'SHM_ANON' may be specified in place of the
path argument to shm_open(2). In this case, an unnamed shared memory
file descriptor will be created similar to the IPC_PRIVATE key for
shmget(2). Note that the shared memory object can still be shared among
processes by sharing the file descriptor via fork(2) or sendmsg(2), but
it is unnamed. This effectively serves to implement the getmemfd() idea
bandied about the lists several times over the years.
- The backing store for shared memory file descriptors are garbage
collected when they are not referenced by any open file descriptors or
the shm_open(2) virtual namespace.
Submitted by: dillon, peter (previous versions)
Submitted by: rwatson (I based this on his version)
Reviewed by: alc (suggested converting getmemfd() to shm_open())
call the pad-less versions of the corresponding syscalls if the running
kernel supports it. Check kern.osreldate once per program and cache the
result to select the appropriate syscall. This maintains userland
compatability with kernel.old's from quite a while back.
Approved by: re (kensmith)
manpages. They are not very related, so separating them makes it
easier to add meaningful cross-references and extend some of the
descriptions.
- Move the part of math(3) that discusses IEEE 754 to the ieee(3)
manpage.
- It was added to libc instead of libm. Hopefully no programs rely
on this mistake.
- It didn't work properly on large long doubles because its argument
was converted to type double, resulting in undefined behavior.
isnormal() the hard way, rather than relying on fpclassify(). This is
a lose in the sense that we need a total of 12 functions, but it is
necessary for binary compatibility because we have never bumped libm's
major version number. In particular, isinf(), isnan(), and isnanf()
were BSD libc functions before they were C99 macros, so we can't
reimplement them in terms of fpclassify() without adding a dependency
on libc.so.5. I have tried to arrange things so that programs that
could be compiled in FreeBSD 4.X will generate the same external
references when compiled in 5.X. At the same time, the new macros
should remain C99-compliant.
The isinf() and isnan() functions remain in libc for historical
reasons; however, I have moved the functions that implement the macros
isfinite() and isnormal() to libm where they belong. Moreover,
half a dozen MD versions of isinf() and isnan() have been replaced
with MI versions that work equally well.
Prodded by: kris
may be built into libc (`static NSS modules') or dynamically loaded
via dlopen (`dynamic NSS modules'). Modules are loaded/initialized
at configuration time (i.e. when nsdispatch is called and nsswitch.conf
is read or re-read).
= Make the nsdispatch(3) core thread-safe.
= New status code for nsdispatch(3) `NS_RETURN', currently used to
signal ERANGE-type issues.
= syslog(3) problems, don't warn/err/abort.
= Try harder to avoid namespace pollution.
= Implement some shims to assist in porting NSS modules written for
the GNU C Library nsswitch interface.
Sponsored by: DARPA, Network Associates Laboratories
isnormal(). The current isinf() and isnan() are perserved for
binary compatibility with 5.0, but new programs will use the macros.
o Implement C99 comparison macros isgreater(), isgreaterequal(),
isless(), islessequal(), islessgreater(), isunordered().
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
o Add a MD header private to libc called _fpmath.h; this header
contains bitfield layouts of MD floating-point types.
o Add a MI header private to libc called fpmath.h; this header
contains bitfield layouts of MI floating-point types.
o Add private libc variables to lib/libc/$arch/gen/infinity.c for
storing NaN values.
o Add __double_t and __float_t to <machine/_types.h>, and provide
double_t and float_t typedefs in <math.h>.
o Add some C99 manifest constants (FP_ILOGB0, FP_ILOGBNAN, HUGE_VALF,
HUGE_VALL, INFINITY, NAN, and return values for fpclassify()) to
<math.h> and others (FLT_EVAL_METHOD, DECIMAL_DIG) to <float.h> via
<machine/float.h>.
o Add C99 macro fpclassify() which calls __fpclassify{d,f,l}() based
on the size of its argument. __fpclassifyl() is never called on
alpha because (sizeof(long double) == sizeof(double)), which is good
since __fpclassifyl() can't deal with such a small `long double'.
This was developed by David Schultz and myself with input from bde and
fenner.
PR: 23103
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
(significant portions)
Reviewed by: bde, fenner (earlier versions)