the "sockarg" ipfw option matches packets associated to
a local socket and with a non-zero so_user_cookie value.
The value is made available as tablearg, so it can be used
as a skipto target or pipe number in ipfw/dummynet rules.
Code by Paul Joe, manpage by me.
Submitted by: Paul Joe
MFC after: 1 week
It's a bit more pedantic regarding .Bl list elements. This has an added
benefit of unbreaking the ipfw(8) manpage, where groff was silently
skipping one list element.
thus don't depend on one_pass flag anymore.
This is a POLA violation, but it is quite difficult to restore
the old behavior with new code. Also, the new behavior matches
behavior of the older "tee" action, and this is more intuitive.
ipfw add 100 allow ip from { 1.2.3.4 or 5.6.7.8 }
(note that the above example could be better written as
ipfw add 100 allow dst-ip 1.2.3.4,5.6.7.8
Submitted by: Riccardo Panicucci
dscp as a search key in table lookups;
+ (re)implement a sysctl variable to control the expire frequency of
pipes and queues when they become empty;
+ add 'queue number' as optional part of the flow_id. This can be
enabled with the command
queue X config mask queue ...
and makes it possible to support priority-based schedulers, where
packets should be grouped according to the priority and not some
fields in the 5-tuple.
This is implemented as follows:
- redefine a field in the ipfw_flow_id (in sys/netinet/ip_fw.h) but
without changing the size or shape of the structure, so there are
no ABI changes. On passing, also document how other fields are
used, and remove some useless assignments in ip_fw2.c
- implement small changes in the userland code to set/read the field;
- revise the functions in ip_dummynet.c to manipulate masks so they
also handle the additional field;
There are no ABI changes in this commit.
of ip->ip_tos) in a table. This can be useful to direct traffic to
different pipes/queues according to the DSCP of the packet, as follows:
ipfw add 100 queue tablearg lookup dscp 3 // table 3 maps dscp->queue
This change is a no-op (but harmless) until the two-line kernel
side is committed, which will happen shortly.
and tested over the past two months in the ipfw3-head branch. This
also happens to be the same code available in the Linux and Windows
ports of ipfw and dummynet.
The major enhancement is a completely restructured version of
dummynet, with support for different packet scheduling algorithms
(loadable at runtime), faster queue/pipe lookup, and a much cleaner
internal architecture and kernel/userland ABI which simplifies
future extensions.
In addition to the existing schedulers (FIFO and WF2Q+), we include
a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new,
very fast version of WF2Q+ called QFQ.
Some test code is also present (in sys/netinet/ipfw/test) that
lets you build and test schedulers in userland.
Also, we have added a compatibility layer that understands requests
from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries,
and replies correctly (at least, it does its best; sometimes you
just cannot tell who sent the request and how to answer).
The compatibility layer should make it possible to MFC this code in a
relatively short time.
Some minor glitches (e.g. handling of ipfw set enable/disable,
and a workaround for a bug in RELENG_7's /sbin/ipfw) will be
fixed with separate commits.
CREDITS:
This work has been partly supported by the ONELAB2 project, and
mostly developed by Riccardo Panicucci and myself.
The code for the qfq scheduler is mostly from Fabio Checconi,
and Marta Carbone and Francesco Magno have helped with testing,
debugging and some bug fixes.
lookup {dst-ip|src-ip|dst-port|src-port|uid|jail} N
which searches the specified field in table N and sets tablearg
accordingly.
With dst-ip or src-ip the option replicates two existing options.
When used with other arguments, the option can be useful to
quickly dispatch traffic based on other fields.
Work supported by the Onelab project.
MFC after: 1 week
it seems that now it is necessary for 'forward' to work outside lo0.
The bug (and fix) was reported on 8.0. This patch probably applies
to RELENG_7 as well.
It seems that 'pf' has a similar bug.
Submitted by: Lytochkin Boris
MFC after: 3 days
"profile" files (bandwidth is mandatory when using a
profile, so it makes sense to have everything in one place).
Update the manpage accordingly.
Submitted by: Marta Carbone
pipes, queues, tags, rule numbers and so on.
These are all different namespaces, and the only thing they have in
common is the fact they use a 16-bit slot to represent the argument.
There is some confusion in the code, mostly for historical reasons,
on how the values 0 and 65535 should be used. At the moment, 0 is
forbidden almost everywhere, while 65535 is used to represent a
'tablearg' argument, i.e. the result of the most recent table() lookup.
For now, try to use explicit constants for the min and max allowed
values, and do not overload the default rule number for that.
Also, make the MTAG_IPFW declaration only visible to the kernel.
NOTE: I think the issue needs to be revisited before 8.0 is out:
the 2^16 namespace limit for rule numbers and pipe/queue is
annoying, and we can easily bump the limit to 2^32 which gives
a lot more flexibility in partitioning the namespace.
MFC after: 5 days
types of MAC overheads such as preambles, link level retransmissions
and more.
Note- this commit changes the userland/kernel ABI for pipes
(but not for ordinary firewall rules) so you need to rebuild
kernel and /sbin/ipfw to use dummynet features.
Please check the manpage for details on the new feature.
The MFC would be trivial but it breaks the ABI, so it will
be postponed until after 7.2 is released.
Interested users are welcome to apply the patch manually
to their RELENG_7 tree.
Work supported by the European Commission, Projects Onelab and
Onelab2 (contract 224263).
above to avoid referencing undefined terms (humans are not compilers
but still care about these things).
Change some .Sh to .Ss to better reflect the structure of the text.
No new content.
Usual moving of code with no changes from ipfw2.c to the
newly created files, and addition of prototypes to ipfw2.h
I have added forward declarations for ipfw_insn_* in ipfw2.h
to avoid a global dependency on ip_fw.h
In this episode:
- introduce a common header with a minimal set of common definitions;
- bring the main() function and options parser in main.c
- rename the main functions with an ipfw_ prefix
No code changes except for the introduction of a global variable,
resvd_set_number, which stores the RESVD_SET value from ip_fw.h
and is used to remove the dependency of main.c from ip_fw.h
(and the subtree of dependencies) for just a single constant.
program name, and ignore that entry. ipfw2.c code instead skips
this entry and starts with options at offset 0, relying on a more
tolerant implementation of the library.
This change fixes the issue by always passing a program name
in the first entry to getopt. The motivation for this change
is to remove a potential compatibility issue should we use
a different getopt() implementation in the future.
No functional changes.
Submitted by: Marta Carbone (parts)
MFC after: 4 weeks
There are still several signed/unsigned warnings left, which
require a bit more study for a proper fix.
This file has grown beyond reasonable limits.
We really need to split it into separate components (ipv4, ipv6,
dummynet, nat, table, userland-kernel communication ...) so we can
make mainteinance easier.
MFC after: 1 weeks
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
the limit in bytes) hard coded into both the kernel and userland.
Make both these limits a sysctl, so it is easy to change the limit.
If the userland part of ipfw finds that the sysctls don't exist,
it will just fall back to the traditional limits.
(100 packets is quite a small limit these days. If you want to test
TCP at 100Mbps, 100 packets can only accommodate a DBP of 12ms.)
Note these sysctls in the man page and warn against increasing them
without thinking first.
MFC after: 3 weeks