having their stack at the 512GB mark. Give 4GB of user VM space for 32
bit apps. Note that this is significantly more than on i386 which gives
only about 2.9GB of user VM to a process (1GB for kernel, plus page
table pages which eat user VM space).
Approved by: re (blanket)
stolen from the ia64/ia32 code (indeed there was a repocopy), but I've
redone the MD parts and added and fixed a few essential syscalls. It
is sufficient to run i386 binaries like /bin/ls, /usr/bin/id (dynamic)
and p4. The ia64 code has not implemented signal delivery, so I had
to do that.
Before you say it, yes, this does need to go in a common place. But
we're in a freeze at the moment and I didn't want to risk breaking ia64.
I will sort this out after the freeze so that the common code is in a
common place.
On the AMD64 side, this required adding segment selector context switch
support and some other support infrastructure. The %fs/%gs etc code
is hairy because loading %gs will clobber the kernel's current MSR_GSBASE
setting. The segment selectors are not used by the kernel, so they're only
changed at context switch time or when changing modes. This still needs
to be optimized.
Approved by: re (amd64/* blanket)
kern_sigprocmask() in the various binary compatibility emulators.
- Replace calls to sigsuspend(), sigaltstack(), sigaction(), and
sigprocmask() that used the stackgap with calls to the corresponding
kern_sig*() functions instead without using the stackgap.
by allprison_mtx), a unique prison/jail identifier field, two path
fields (pr_path for reporting and pr_root vnode instance) to store
the chroot() point of each jail.
o Add jail_attach(2) to allow a process to bind to an existing jail.
o Add change_root() to perform the chroot operation on a specified
vnode.
o Generalize change_dir() to accept a vnode, and move namei() calls
to callers of change_dir().
o Add a new sysctl (security.jail.list) which is a group of
struct xprison instances that represent a snapshot of active jails.
Reviewed by: rwatson, tjr
This is for the not-quite-ready signal/fpu abi stuff. It may not see
the light of day, but I'm certainly not going to be able to validate it
when getting shot in the foot due to syscall number conflicts.
execve_secure() system call, which permits a process to pass in a label
for a label change during exec. This permits SELinux to change the
label for the resulting exec without a race following a manual label
change on the process. Because this interface uses our general purpose
MAC label abstraction, we call it execve_mac(), and wrap our port of
SELinux's execve_secure() around it with appropriate sid mappings.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
handler in the kernel at the same time. Also, allow for the
exec_new_vmspace() code to build a different sized vmspace depending on
the executable environment. This is a big help for execing i386 binaries
on ia64. The ELF exec code grows the ability to map partial pages when
there is a page size difference, eg: emulating 4K pages on 8K or 16K
hardware pages.
Flesh out the i386 emulation support for ia64. At this point, the only
binary that I know of that fails is cvsup, because the cvsup runtime
tries to execute code in pages not marked executable.
Obtained from: dfr (mostly, many tweaks from me).
without a few patches for the rest of the kernel to allow the image
activator to override exec_copyout_strings and setregs.
None of the syscall argument translation has been done. Possibly, this
translation layer can be shared with any platform that wants to support
running ILP32 binaries on an LP64 host (e.g. sparc32 binaries?)