locking flags when acquiring a vnode. The immediate purpose is
to allow polling lock requests (LK_NOWAIT) needed by soft updates
to avoid deadlock when enlisting other processes to help with
the background cleanup. For the future it will allow the use of
shared locks for read access to vnodes. This change touches a
lot of files as it affects most filesystems within the system.
It has been well tested on FFS, loopback, and CD-ROM filesystems.
only lightly on the others, so if you find a problem there, please
let me (mckusick@mckusick.com) know.
the bio and buffer structures to have daddr64_t bio_pblkno,
b_blkno, and b_lblkno fields which allows access to disks
larger than a Terabyte in size. This change also requires
that the VOP_BMAP vnode operation accept and return daddr64_t
blocks. This delta should not affect system operation in
any way. It merely sets up the necessary interfaces to allow
the development of disk drivers that work with these larger
disk block addresses. It also allows for the development of
UFS2 which will use 64-bit block addresses.
structure changes now rather then piecemeal later on. mnt_nvnodelist
currently holds all the vnodes under the mount point. This will eventually
be split into a 'dirty' and 'clean' list. This way we only break kld's once
rather then twice. nvnodelist will eventually turn into the dirty list
and should remain compatible with the klds.
sizeof(struct inode) into a new malloc bucket on the i386. This
didn't happen in -current due to the removal of i_lock, but it does
no harm to apply the workaround to -current first.
Reduce the size of the i_spare[] array in struct inode from 4 to
3 entries, and change ext2fs to use i_din.di_spare[1] so that it
does not need i_spare[3].
Reviewed by: bde
MFC after: 3 days
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
directories. When enabled via "options UFS_DIRHASH", in-core hash
arrays are maintained for large directories. These allow all
directory operations to take place quickly instead of requiring
long linear searches. For now anyway, dirhash is not enabled by
default.
The in-core hash arrays have a memory requirement that is approximately
half the size of the size of the on-disk directory file. A number
of new sysctl variables allow control over which directories get
hashed and over the maximum amount of memory that dirhash will use:
vfs.ufs.dirhash_minsize
The minimum on-disk directory size for which hashing should be
used. The default is 2560 (2.5k).
vfs.ufs.dirhash_maxmem
The system-wide maximum total memory to be used by dirhash data
structures. The default is 2097152 (2MB).
The current amount of memory being used by dirhash is visible
through the read-only sysctl variable vfs.ufs.dirhash_maxmem.
Finally, some extra sanity checks that are enabled by default, but
which may have an impact on performance, can be disabled by setting
vfs.ufs.dirhash_docheck to 0.
Discussed on: -fs, -hackers
the number of references on the filesystem root vnode to be both
expected and released. Many filesystems hold an extra reference on
the filesystem root vnode, which must be accounted for when
determining if the filesystem is busy and then released if it isn't
busy. The old `skipvp' approach required individual filesystem
xxx_unmount functions to re-implement much of vflush()'s logic to
deal with the root vnode.
All 9 filesystems that hold an extra reference on the root vnode
got the logic wrong in the case of forced unmounts, so `umount -f'
would always fail if there were any extra root vnode references.
Fix this issue centrally in vflush(), now that we can.
This commit also fixes a vnode reference leak in devfs, which could
result in idle devfs filesystems that refuse to unmount.
Reviewed by: phk, bp
that are committed to being freed and reflect these blocks in the
counts returned by statfs (and thus also by the `df' command). This
change allows programs such as those that do news expiration to
know when to stop if they are trying to create a certain percentage
of free space. Note that this change does not solve the much harder
problem of making this to-be-freed space available to applications
that want it (thus on a nearly full filesystem, you may still
encounter out-of-space conditions even though the free space will
show up eventually). Hopefully this harder problem will be the
subject of a future enhancement.
other "system" header files.
Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.
Sort sys/*.h includes where possible in affected files.
OK'ed by: bde (with reservations)
Long ago, bread() set b_blkno to the disk block number as a side effect
of doing physical i/o (or it just retained the setting from when the
i/o was done). The setting is lost when buffers go away and then are
reconsituted from VM. bread() originally compensated by doing a
VOP_BMAP() to recover b_blkno, but this was no good since it sometimes
caused extra i/o or even deadlock for bread()ing metadata to do the
bmap. This was fixed in vfs_bio.c 1.33 (1995/03/03) and ffs_balloc.c
1.5, etc., by removing the VOP_BMAP() from bread() and breadn(), and
changing all (?) places that used b_blkno to set it if necessary.
ext2fs was not imported until later in 1995 and was still depending on
the old behaviour of bread() in at least ext2_balloc(). This caused
filesystem and file corruption by clobbering direct block numbers in
inodes.
to struct mount.
This makes the "struct netexport *" paramter to the vfs_export
and vfs_checkexport interface unneeded.
Consequently that all non-stacking filesystems can use
vfs_stdcheckexp().
At the same time, make it a pointer to a struct netexport
in struct mount, so that we can remove the bogus AF_MAX
and #include <net/radix.h> from <sys/mount.h>
structure rather than assuming that the device vnode would reside
in the FFS filesystem (which is obviously a broken assumption with
the device filesystem).
An initial tidyup of the mount() syscall and VFS mount code.
This code replaces the earlier work done by jlemon in an attempt to
make linux_mount() work.
* the guts of the mount work has been moved into vfs_mount().
* move `type', `path' and `flags' from being userland variables into being
kernel variables in vfs_mount(). `data' remains a pointer into
userspace.
* Attempt to verify the `type' and `path' strings passed to vfs_mount()
aren't too long.
* rework mount() and linux_mount() to take the userland parameters
(besides data, as mentioned) and pass kernel variables to vfs_mount().
(linux_mount() already did this, I've just tidied it up a little more.)
* remove the copyin*() stuff for `path'. `data' still requires copyin*()
since its a pointer into userland.
* set `mount->mnt_statf_mntonname' in vfs_mount() rather than in each
filesystem. This variable is generally initialised with `path', and
each filesystem can override it if they want to.
* NOTE: f_mntonname is intiailised with "/" in the case of a root mount.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
by ensuring that newly allocated blocks are zerod. The
race can occur even in the case where the write covers
the entire block.
Reported by: Sven Berkvens <sven@berkvens.net>, Marc Olzheim <zlo@zlo.nu>
block bitmaps before unmount() completes. They were written using
bdwrite(), so they were normally written less than 32 seconds after
unmount(), but this is too late if the media is removed or the system
is rebooted soon after unmount(). sync()ing before unmount() didn't
help, because ext2fs uses buggy private caching for these blocks --
it doesn't even bdwrite() them until they are uncached or the filesystem
is unmounted. sync()ing after unmount() didn't help, because sync()
only applies to (vnodes for) mounted filesystems.
PR: 22726
ufs_vnops.c:
1) i_ino was confused with i_number, so the inode number passed to
VFS_VGET() was usually wrong (usually 0U).
2) ip was dereferenced after vgone() freed it, so the inode number
passed to VFS_VGET() was sometimes not even wrong.
Bug (1) was usually fatal in ext2_mknod(), since ext2fs doesn't have
space for inode 0 on the disk; ino_to_fsba() subtracts 1 from the
inode number, so inode number 0U gives a way out of bounds array
index. Bug(1) was usually harmless in ufs_mknod(); ino_to_fsba()
doesn't subtract 1, and VFS_VGET() reads suitable garbage (all 0's?)
from the disk for the invalid inode number 0U; ufs_mknod() returns
a wrong vnode, but most callers just vput() it; the correct vnode is
eventually obtained by an implicit VFS_VGET() just like it used to be.
Bug (2) usually doesn't happen.
When this feature is enabled, mke2fs doesn't necessarily allocate a
super block and its associated descriptor blocks for every group.
The (non-)allocations are reflected in the block bitmap. Since the
filesystem code doesn't write to these blocks except for the first
superblock, all it has to do to support them is to not count them in
ext2_statfs() and not attempt to check them at mount time in
ext2_check_blocks_bitmap() (the check has never been enabled in
FreeBSD anyway).
the offending inline function (BUF_KERNPROC) on it being #included
already.
I'm not sure BUF_KERNPROC() is even the right thing to do or in the
right place or implemented the right way (inline vs normal function).
Remove consequently unneeded #includes of <sys/proc.h>
because it only takes a struct tag which makes it impossible to
use unions, typedefs etc.
Define __offsetof() in <machine/ansi.h>
Define offsetof() in terms of __offsetof() in <stddef.h> and <sys/types.h>
Remove myriad of local offsetof() definitions.
Remove includes of <stddef.h> in kernel code.
NB: Kernelcode should *never* include from /usr/include !
Make <sys/queue.h> include <machine/ansi.h> to avoid polluting the API.
Deprecate <struct.h> with a warning. The warning turns into an error on
01-12-2000 and the file gets removed entirely on 01-01-2001.
Paritials reviews by: various.
Significant brucifications by: bde
Add lockdestroy() and appropriate invocations, which corresponds to
lockinit() and must be called to clean up after a lockmgr lock is no
longer needed.
separately (nfs, cd9660 etc) or keept as a first element of structure
referenced by v_data pointer(ffs). Such organization leads to known problems
with stacked filesystems.
From this point vop_no*lock*() functions maintain only interlock lock.
vop_std*lock*() functions maintain built-in v_lock structure using lockmgr().
vop_sharedlock() is compatible with vop_stdunlock(), but maintains a shared
lock on vnode.
If filesystem wishes to export lockmgr compatible lock, it can put an address
of this lock to v_vnlock field. This indicates that the upper filesystem
can take advantage of it and use single lock structure for entire (or part)
of stack of vnodes. This field shouldn't be examined or modified by VFS code
except for initialization purposes.
Reviewed in general by: mckusick
The cookie buffer was usually overrun by a large amount whenever
cookies were used. Cookies are used by nfs and the Linuxulator, so
this bug usually caused panics whenever an ext2fs filesystem was nfs
mounted or a Linux utility that calls readdir() was run on an ext2fs
filesystem.
The directory buffer was sometimes overrun by a small amount. This
sometimes caused panics and wrong results even for FreeBSD utilities,
but it was usually harmless because FreeBSD utilities use a large
enough buffer size (4K). Linux utilities usually triggered the bug
since they use a too-small buffer size (512 bytes), at least with the
old RedHat utilities that I tested with.
PR: 19407 (this fix is incomplete or for a slightly different bug)
with the new snapshot code.
Update addaliasu to correctly implement the semantics of the old
checkalias function. When a device vnode first comes into existence,
check to see if an anonymous vnode for the same device was created
at boot time by bdevvp(). If so, adopt the bdevvp vnode rather than
creating a new vnode for the device. This corrects a problem which
caused the kernel to panic when taking a snapshot of the root
filesystem.
Change the calling convention of vn_write_suspend_wait() to be the
same as vn_start_write().
Split out softdep_flushworklist() from softdep_flushfiles() so that
it can be used to clear the work queue when suspending filesystem
operations.
Access to buffers becomes recursive so that snapshots can recursively
traverse their indirect blocks using ffs_copyonwrite() when checking
for the need for copy on write when flushing one of their own indirect
blocks. This eliminates a deadlock between the syncer daemon and a
process taking a snapshot.
Ensure that softdep_process_worklist() can never block because of a
snapshot being taken. This eliminates a problem with buffer starvation.
Cleanup change in ffs_sync() which did not synchronously wait when
MNT_WAIT was specified. The result was an unclean filesystem panic
when doing forcible unmount with heavy filesystem I/O in progress.
Return a zero'ed block when reading a block that was not in use at
the time that a snapshot was taken. Normally, these blocks should
never be read. However, the readahead code will occationally read
them which can cause unexpected behavior.
Clean up the debugging code that ensures that no blocks be written
on a filesystem while it is suspended. Snapshots must explicitly
label the blocks that they are writing during the suspension so that
they do not cause a `write on suspended filesystem' panic.
Reorganize ffs_copyonwrite() to eliminate a deadlock and also to
prevent a race condition that would permit the same block to be
copied twice. This change eliminates an unexpected soft updates
inconsistency in fsck caused by the double allocation.
Use bqrelse rather than brelse for buffers that will be needed
soon again by the snapshot code. This improves snapshot performance.
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.
Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).
<sys/bio.h>.
<sys/bio.h> is now a prerequisite for <sys/buf.h> but it shall
not be made a nested include according to bdes teachings on the
subject of nested includes.
Diskdrivers and similar stuff below specfs::strategy() should no
longer need to include <sys/buf.> unless they need caching of data.
Still a few bogus uses of struct buf to track down.
Repocopy by: peter
extattr.h to be included. This fixes the broken ext2fs build as of
the import of extattr code.
Also added $FreeBSD: $ to a couple of files that didn't have them,
without which I couldn't commit this fix.
Reported by: "George W. Dinolt" <gdinolt@pacbell.net>
(name, value) pairs to be associated with inodes. This support is
used for ACLs, MAC labels, and Capabilities in the TrustedBSD
security extensions, which are currently under development.
In this implementation, attributes are backed to data vnodes in the
style of the quota support in FFS. Support for FFS extended
attributes may be enabled using the FFS_EXTATTR kernel option
(disabled by default). Userland utilities and man pages will be
committed in the next batch. VFS interfaces and man pages have
been in the repo since 4.0-RELEASE and are unchanged.
o ufs/ufs/extattr.h: UFS-specific extattr defines
o ufs/ufs/ufs_extattr.c: bulk of support routines
o ufs/{ufs,ffs,mfs}/*.[ch]: hooks and extattr.h includes
o contrib/softupdates/ffs_softdep.c: extattr.h includes
o conf/options, conf/files, i386/conf/LINT: added FFS_EXTATTR
o coda/coda_vfsops.c: XXX required extattr.h due to ufsmount.h
(This should not be the case, and will be fixed in a future commit)
Currently attributes are not supported in MFS. This will be fixed.
Reviewed by: adrian, bp, freebsd-fs, other unthanked souls
Obtained from: TrustedBSD Project
(Much of this done by script)
Move B_ORDERED flag to b_ioflags and call it BIO_ORDERED.
Move b_pblkno and b_iodone_chain to struct bio while we transition, they
will be obsoleted once bio structs chain/stack.
Add bio_queue field for struct bio aware disksort.
Address a lot of stylistic issues brought up by bde.
async I/O's. The sequential read heuristic has been extended to
cover writes as well. We continue to call cluster_write() normally,
thus blocks in the file will still be reallocated for large (but still
random) I/O's, but I/O will only be initiated for truely sequential
writes.
This solves a number of annoying situations, especially with DBM (hash
method) writes, and also has the side effect of fixing a number of
(stupid) benchmarks.
Reviewed-by: mckusick
substitute BUF_WRITE(foo) for VOP_BWRITE(foo->b_vp, foo)
substitute BUF_STRATEGY(foo) for VOP_STRATEGY(foo->b_vp, foo)
This patch is machine generated except for the ccd.c and buf.h parts.
field in struct buf: b_iocmd. The b_iocmd is enforced to have
exactly one bit set.
B_WRITE was bogusly defined as zero giving rise to obvious coding
mistakes.
Also eliminate the redundant struct buf flag B_CALL, it can just
as efficiently be done by comparing b_iodone to NULL.
Should you get a panic or drop into the debugger, complaining about
"b_iocmd", don't continue. It is likely to write on your disk
where it should have been reading.
This change is a step in the direction towards a stackable BIO capability.
A lot of this patch were machine generated (Thanks to style(9) compliance!)
Vinum users: Greg has not had time to test this yet, be careful.
the unwary if the code were called in slightly different ways.
1) In ufs_bmaparray() the code for calculating 'runb' will stop one block
short of the first entry in an indirect block. i.e. if an indirect block
contains N block numbers b[0]..b[N-1] then the code will never check if
b[0] and b[1] are sequential. For reference, compare with the equivalent
code that deals with direct blocks.
2) In ufs_lookup() there is an off-by-one error in the test that checks
if dp->i_diroff is outside the range of the the current directory size.
This is completely harmless, since the following while-loop condition
'dp->i_offset < endsearch' is never met, so the code immediately
does a second pass starting at dp->i_offset = 0.
3) Again in ufs_lookup(), the condition in a sanity check is wrong
for directories that are longer than one block. This bug means that
the sanity check is only effective for small directories.
Submitted by: Ian Dowse <iedowse@maths.tcd.ie>
features (except for file types in directory entries, which will be
supported soon).
Centralized the magic number and compatibility checking.
Dropped support for ancient (pre-0.2b) filesystems, as in the Linux
version. Our "support" consisted of printing more details in the error
message before failing at mount time.
main changes are:
- many things are more dynamic; e.g., the inode size is a new parameter
in the superblock instead of a constant.
- extensions are controlled by new flags in the superblock.
- directory entries may have a file type field.
These changes are not used yet, except for a spelling change which affects
ext2_cnv.c
(mainly things that were lost or misformatted in a different way by
moving them to ext2_fs_i.h and back, and ifdefs for user mode that
were excessively edited).
to avoid the namespace problems caused by <ufs/ufs/inode.h> #defining
i_mode, etc.
ext2_fs_i.h had nothing to do with the Linux version. It was a small
part of the Linux version of ext2_fs.h (the part that declares extra
in-core fields for an inode). We don't need it because we use the
ufs in-core inode for the extra fields.
mainly to get control over new features. E.g., ext2fs filesystems
may now have a type field in directory entries (like ufs has had for
20 years or so). Current versions of FreeBSD ext2fs panic on this.
ext2fs filesystem code is supposed to check the feature flags in the
superblock and take appropriate actions for unsupported features.
The other new features are sparse superblocks, large file support,
and btree'd directories.
files seem to be based on. Don't bother importing <asm-i386/string.h>
just to get the Linux implementation of memscan() which is appended
to our i386-bitops.h. The BSD skpc() should have been used instead
of memscan().
Obtained from: Linux 1.2.2 distribution
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.
Note: Previous commit to these files (except coda_vnops and devfs_vnops)
that claimed to remove WILLRELE from VOP_RENAME actually removed it from
VOP_MKNOD.
Correctly lock vnodes when calling VOP_OPEN() from filesystem mount code.
Unify spec_open() for bdev and cdev cases.
Remove the disabled bdev specific read/write code.
the soft updates changes: only report the link count to be i_effnlink
in ufs_getattr() for file systems that maintain i_effnlink.
Tested by: Mike Dracopoulos <mdraco@math.uoa.gr>
heuristic to detect sequential operation.
VM-related forced clustering code removed from ufs in preparation for a
commit to vm/vm_fault.c that does it more generally.
Reviewed by: David Greenman <dg@root.com>, Alan Cox <alc@cs.rice.edu>
Rename dev->si_bsize_max to si_iosize_max and set it in spec_open
if the device didn't.
Set vp->v_maxio from dev->si_bsize_max in spec_open rather than
in ufs_bmap.c