Commit Graph

4 Commits

Author SHA1 Message Date
Warner Losh
f86e60008b Regularize my copyright notice
o Remove All Rights Reserved from my notices
o imp@FreeBSD.org everywhere
o regularize punctiation, eliminate date ranges
o Make sure that it's clear that I don't claim All Rights reserved by listing
  All Rights Reserved on same line as other copyright holders (but not
  me). Other such holders are also listed last where it's clear.
2019-12-04 16:56:11 +00:00
Warner Losh
d3f1313287 Remove All Rights Reserved
Remove the all rights reserved clause from my copyright, and make
other minor tweaks needed where that might have created ambiguity.
2019-02-05 21:37:34 +00:00
Marius Strobl
aca38eab8a o Add support for eMMC HS200 and HS400 bus speed modes at 200 MHz to
sdhci(4), mmc(4) and mmcsd(4). For the most part, this consists of:
  - Correcting and extending the infrastructure for negotiating and
    enabling post-DDR52 modes already added as part of r315598. In
    fact, HS400ES now should work as well but hasn't been activated
    due to lack of corresponding hardware.
  - Adding support executing standard SDHCI initial tuning as well
    as re-tuning as required for eMMC HS200/HS400 and the fast UHS-I
    SD card modes. Currently, corresponding methods are only hooked
    up to the ACPI and PCI front-ends of sdhci(4), though. Moreover,
    sdhci(4) won't offer any modes requiring (re-)tuning to the MMC/SD
    layer in order to not break operations with other sdhci(4) front-
    ends. Likewise, sdhci(4) now no longer offers modes requiring the
    set_uhs_timing method introduced in r315598 to be implemented/
    hooked up (previously, this method was used with DDR52 only, which
    in turn is only available with Intel controllers so far, i. e. no
    such limitation was necessary before). Similarly for 1.2/1.8 V VCCQ
    support and the switch_vccq method.
  - Addition of locking to the IOCTL half of mmcsd(4) to prevent races
    with detachment and suspension, especially since it's required to
    immediately switch away from RPMB partitions again after an access
    to these (so re-tuning can take place anew, given that the current
    eMMC specification v5.1 doesn't allow tuning commands to be issued
    with a RPMB partition selected). Therefore, the existing part_mtx
    lock in the mmcsd(4) softc is additionally renamed to disk_mtx in
    order to denote that it only refers to the disk(9) half, likewise
    for corresponding macros.

  On the system where the addition of DDR52 support increased the read
  throughput to ~80 MB/s (from ~45 MB/s at high speed), HS200 yields
  ~154 MB/s and HS400 ~187 MB/s, i. e. performance now has more than
  quadrupled compared to pre-r315598.

  Also, with the advent of (re-)tuning support, most infrastructure
  necessary for SD card UHS-I modes up to SDR104 now is also in place.
  Note, though, that the standard SDHCI way of (re-)tuning is special
  in several ways, which also is why sending the actual tuning requests
  to the device is part of sdhci(4). SDHCI implementations not following
  the specification, MMC and non-SDHCI SD card controllers likely will
  use a generic implementation in the MMC/SD layer for executing tuning,
  which hasn't been written so far, though.

  However, in fact this isn't a feature-only change; there are boards
  based on Intel Bay Trail where DDR52 is problematic and the suggested
  workaround is to use HS200 mode instead. So far exact details are
  unknown, however, i. e. whether that's due to a defect in these SoCs
  or on the boards.

  Moreover, due to the above changes requiring to be aware of possible
  MMC siblings in the fast path of mmc(4), corresponding information
  now is cached in mmc_softc. As a side-effect, mmc_calculate_clock(),
  mmc_delete_cards(), mmc_discover_cards() and mmc_rescan_cards() now
  all are guaranteed to operate on the same set of devices as there no
  longer is any use of device_get_children(9), which can fail in low
  memory situations. Likewise, mmc_calculate_clock() now longer will
  trigger a panic due to the latter.

o Fix a bug in the failure reporting of mmcsd_delete(); in case of an
  error when the starting block of a previously stored erase request
  is used (in order to be able to erase a full erase sector worth of
  data), the starting block of the newly supplied bio_pblkno has to be
  returned for indicating no progress. Otherwise, upper layers might
  be told that a negative number of BIOs have been completed, leading
  to a panic.

o Fix 2 bugs on resume:
  - Things done in fork1(9) like the acquisition of an SX lock or the
    sleepable memory allocation are incompatible with a MTX_DEF taken.
    Thus, mmcsd_resume() must not call kproc_create(9), which in turn
    uses fork1(9), with the disk_mtx (formerly part_mtx) held.
  - In mmc_suspend(), the bus is powered down, which in the typical
    case of a device being selected at the time of suspension, causes
    the device deselection as part of the bus acquisition by mmc(4) in
    mmc_scan() to fail as the bus isn't powered up again before later
    in mmc_go_discovery(). Thus, power down with the bus acquired in
    mmc_suspend(), which will trigger the deselection up-front.

o Fix a memory leak in mmcsd_ioctl() in case copyin(9) fails. [1]

o Fix missing variable initialization in mmc_switch_status(). [2]

o Fix R1_SWITCH_ERROR detection in mmc_switch_status(). [3]

o Handle the case of device_add_child(9) failing, for example due to
  a memory shortage, gracefully in mmc(4) and sdhci(4), including not
  leaking memory for the instance variables in case of mmc(4) (which
  might or might not fix [4] as the latter problem has been discovered
  independently).

o Handle the case of an unknown SD CSD version in mmc_decode_csd_sd()
  gracefully instead of calling panic(9).

o Again, check and handle the return values of some additional function
  calls in mmc(4) instead of assuming that everything went right or mark
  non-fatal errors by casting the return value to void.

o Correct a typo in the Linux IOCTL compatibility; it should have been
  MMC_IOC_MULTI_CMD rather than MMC_IOC_CMD_MULTI.

o Now that we are reaching ever faster speeds (more improvement in this
  regard is to be expected when adding ADMA support to sdhci(4)), apply
  a few micro-optimizations like predicting mmc(4) and sdhci(4) debugging
  to be off or caching erase sector and maximum data sizes as well support
  of block addressing in mmsd(4) (instead of doing 2 indirections on every
  read/write request for determining the maximum data size for example).

Reported by:	Coverity
CID:		1372612 [1], 1372624 [2], 1372594 [3], 1007069 [4]
2017-07-23 16:11:47 +00:00
Marius Strobl
72dec0792a - Add support for eMMC "partitions". Besides the user data area, i. e.
the default partition, eMMC v4.41 and later devices can additionally
  provide up to:
  1 enhanced user data area partition
  2 boot partitions
  1 RPMB (Replay Protected Memory Block) partition
  4 general purpose partitions (optionally with a enhanced or extended
    attribute)

  Of these "partitions", only the enhanced user data area one actually
  slices the user data area partition and, thus, gets handled with the
  help of geom_flashmap(4). The other types of partitions have address
  space independent from the default partition and need to be switched
  to via CMD6 (SWITCH), i. e. constitute a set of additional "disks".

  The second kind of these "partitions" doesn't fit that well into the
  design of mmc(4) and mmcsd(4). I've decided to let mmcsd(4) hook all
  of these "partitions" up as disk(9)'s (except for the RPMB partition
  as it didn't seem to make much sense to be able to put a file-system
  there and may require authentication; therefore, RPMB partitions are
  solely accessible via the newly added IOCTL interface currently; see
  also below). This approach for one resulted in cleaner code. Second,
  it retains the notion of mmcsd(4) children corresponding to a single
  physical device each. With the addition of some layering violations,
  it also would have been possible for mmc(4) to add separate mmcsd(4)
  instances with one disk each for all of these "partitions", however.
  Still, both mmc(4) and mmcsd(4) share some common code now e. g. for
  issuing CMD6, which has been factored out into mmc_subr.c.

  Besides simply subdividing eMMC devices, some Intel NUCs having UEFI
  code in the boot partitions etc., another use case for the partition
  support is the activation of pseudo-SLC mode, which manufacturers of
  eMMC chips typically associate with the enhanced user data area and/
  or the enhanced attribute of general purpose partitions.

  CAVEAT EMPTOR: Partitioning eMMC devices is a one-time operation.

- Now that properly issuing CMD6 is crucial (so data isn't written to
  the wrong partition for example), make a step into the direction of
  correctly handling the timeout for these commands in the MMC layer.
  Also, do a SEND_STATUS when CMD6 is invoked with an R1B response as
  recommended by relevant specifications. However, quite some work is
  left to be done in this regard; all other R1B-type commands done by
  the MMC layer also should be followed by a SEND_STATUS (CMD13), the
  erase timeout calculations/handling as documented in specifications
  are entirely ignored so far, the MMC layer doesn't provide timeouts
  applicable up to the bridge drivers and at least sdhci(4) currently
  is hardcoding 1 s as timeout for all command types unconditionally.
  Let alone already available return codes often not being checked in
  the MMC layer ...

- Add an IOCTL interface to mmcsd(4); this is sufficiently compatible
  with Linux so that the GNU mmc-utils can be ported to and used with
  FreeBSD (note that due to the remaining deficiencies outlined above
  SANITIZE operations issued by/with `mmc` currently most likely will
  fail). These latter will be added to ports as sysutils/mmc-utils in
  a bit. Among others, the `mmc` tool of the GNU mmc-utils allows for
  partitioning eMMC devices (tested working).

- For devices following the eMMC specification v4.41 or later, year 0
  is 2013 rather than 1997; so correct this for assembling the device
  ID string properly.

- Let mmcsd.ko depend on mmc.ko. Additionally, bump MMC_VERSION as at
  least for some of the above a matching pair is required.

- In the ACPI front-end of sdhci(4) describe the Intel eMMC and SDXC
  controllers as such in order to match the PCI one.
  Additionally, in the entry for the 80860F14 SDXC controller remove
  the eMMC-only SDHCI_QUIRK_INTEL_POWER_UP_RESET.

OKed by:	imp
Submitted by:	ian (mmc_switch_status() implementation)
2017-03-16 22:23:04 +00:00