On OFW based machines, it is just too confusing having the firmware and
OS loader giving the same prompt. This is a nice compromise that 99% of the
users on non-OFW platforms will probably not even notice.
instead of looping until the disk is full. This kind of failure can
especially happen when a version of awk that doesn't support POSIX
character classes is used.
Submitted by: David Wolfskill <david@catwhisker.org>
- Add S4BIOS sleep implementation. This will works well if MIB
hw.acpi.s4bios is set (and of course BIOS supports it and hibernation
is enabled correctly).
- Add DSDT overriding support which is submitted by takawata originally.
If loader tunable acpi_dsdt_load="YES" and DSDT file is set to
acpi_dsdt_name (default DSDT file name is /boot/acpi_dsdt.aml),
ACPI CA core loads DSDT from given file rather than BIOS memory block.
DSDT file can be generated by iasl in ports/devel/acpicatools/.
- Add new files so that we can add our proposed additional code to Intel
ACPI CA into these files temporary. They will be removed when
similar code is added into ACPI CA officially.
no emulation mode. Unlike other BIOS devices, this device uses 2048 byte
sectors. Also, the bioscd driver does not have to worry about slices
or partitions.
etc. The only bit of debugging left is performing dual output to both
the screen and COM1. Also, the twiddle is still disabled since it seems
to do weird things to the serial dump. cdboot now has 880 bytes to spare.
to the El Torito standard for CD booting, a CD may boot in "No emulation"
mode without using a floppy image. In this mode, the BIOS loads a program
off of the CD into memory and creates a BIOS device using 2048 byte sectors
for the CD. According to the standard, this program can be up to 0xFFFF
virtual (512-byte) sectors long. The old cdldr depended on this by having
the BIOS load the entire loader and the small cdldr stub as one binary
similar to pxeboot so that cdldr didn't have to read the CD to find the
loader. However, the NT no emulation loader just uses 1 disk sector
(4 virtual sectors), so it seems that at least some BIOS writers just did
enough to get NT to boot by only loading 1 sector and ignoring the sector
count. Thus, while cdldr should have worked in theory, it doesn't in
practice. This replacment fits entirely in 1 sector and includes simple
ISO 9660 support. It looks for /boot/loader on the CD and loads it up
using the BIOS. This allows us to not have to depend on the limited size
of floppy images but use a full GENERIC kernel for CD-ROM installs in the
future, among other things.
This version of cdboot is a bit bloated as it includes some useful
debugging routines that people can pull to use in other x86 assembly
modules. Even with all the debugging cruft, we still have 272 bytes to
spare.
devices in 'lsdev' output rather than printing out a pointer to the
print function since the user really could care less about the pointer
value. Perhaps this was intended to be a debugging printf?
when debugging boot problems. It is not on by default but is enabled via
the BTX_SERIAL variable. The port and speed can be set via the same
variables used by boot2 and the loader.
o Make <stdint.h> a symbolic link to <sys/stdint.h>.
o Move most of <sys/inttypes.h> into <sys/stdint.h>, as per C99.
o Remove <sys/inttypes.h>.
o Adjust includes in sys/types.h and boot/efi/include/ia64/efibind.h
to reflect new location of integer types in <sys/stdint.h>.
o Remove previously symbolicly linked <inttypes.h>, instead create a
new file.
o Add MD headers <machine/_inttypes.h> from NetBSD.
o Include <sys/stdint.h> in <inttypes.h>, as required by C99; and
include <machine/_inttypes.h> in <inttypes.h>, to fill in the
remaining requirements for <inttypes.h>.
o Add additional integer types in <machine/ansi.h> and
<machine/limits.h> which are included via <sys/stdint.h>.
Partially obtain from: NetBSD
Tested on: alpha, i386
Discussed on: freebsd-standards@bostonradio.org
Reviewed by: bde, fenner, obrien, wollman
dedicated" mode. This was specifying that there are 256 (illegal!)
heads on the disk. If bioses store that in a byte, and it gets truncated
to 0, then that almost certainly causes the infamous divide-by-zero
nightmare.
This is also most likely the reason why the Thinkpad T20/A20 series
were locking up when FreeBSD was installed. This is also the most likely
reason why a boot1 being present causes an IA64 box to lock up at boot.
(removing the "part4" stuff from boot1.s fixes the IA64 boxes and would
most likely have fixed the T20/A20 and some TP600E series thinkpads)
Remove asm functions to call the openfirmware and kernel entry points;
we can just call them directly.
Don't use the stack pointer for an intermediate result in setx.
Put the stack in the bss.