Before this change the IV-Key was used to generate encryption keys,
which was incorrect, but safe - for the XTS mode this key was unused
anyway and for CBC mode it was used differently to generate IV
vectors, so there is no risk that IV vector collides with encryption
key somehow.
Bump version number and keep compatibility for older versions.
MFC after: 2 weeks
start only one worker thread. For software crypto it will start by default
N worker threads where N is the number of available CPUs.
This is not optimal if hardware crypto is AES-NI, which uses CPU for AES
calculations.
Change that to always start one worker thread for every available CPU.
Number of worker threads per GELI provider can be easly reduced with
kern.geom.eli.threads sysctl/tunable and even for software crypto it
should be reduced when using more providers.
While here, when number of threads exceeds number of CPUs avilable don't
reduce this number, assume the user knows what he is doing.
Reported by: Yuri Karaban <dev@dev97.com>
MFC after: 3 days
with older FreeBSD versions:
- Add -V option to 'geli init' to specify version number. If no -V is given
the most recent version is used.
- If -V is given don't allow to use features not supported by this version.
- Print version in 'geli list' output.
- Update manual page and add table describing which GELI version is
supported by which FreeBSD version, so one can use it when preparing GELI
device for older FreeBSD version.
Inspired by: Garrett Cooper <yanegomi@gmail.com>
MFC after: 3 days
was not updated to pass CRD_F_KEY_EXPLICIT flag to opencrypto. This resulted in
always using first key.
We need to support providers created with this bug, so set special
G_ELI_FLAG_FIRST_KEY flag for GELI provider in integrity mode with version
smaller than 6 and pass the CRD_F_KEY_EXPLICIT flag to opencrypto only if
G_ELI_FLAG_FIRST_KEY doesn't exist.
Reported by: Anton Yuzhaninov <citrin@citrin.ru>
MFC after: 1 week
cpuset_t objects.
That is going to offer the underlying support for a simple bump of
MAXCPU and then support for number of cpus > 32 (as it is today).
Right now, cpumask_t is an int, 32 bits on all our supported architecture.
cpumask_t on the other side is implemented as an array of longs, and
easilly extendible by definition.
The architectures touched by this commit are the following:
- amd64
- i386
- pc98
- arm
- ia64
- XEN
while the others are still missing.
Userland is believed to be fully converted with the changes contained
here.
Some technical notes:
- This commit may be considered an ABI nop for all the architectures
different from amd64 and ia64 (and sparc64 in the future)
- per-cpu members, which are now converted to cpuset_t, needs to be
accessed avoiding migration, because the size of cpuset_t should be
considered unknown
- size of cpuset_t objects is different from kernel and userland (this is
primirally done in order to leave some more space in userland to cope
with KBI extensions). If you need to access kernel cpuset_t from the
userland please refer to example in this patch on how to do that
correctly (kgdb may be a good source, for example).
- Support for other architectures is going to be added soon
- Only MAXCPU for amd64 is bumped now
The patch has been tested by sbruno and Nicholas Esborn on opteron
4 x 12 pack CPUs. More testing on big SMP is expected to came soon.
pluknet tested the patch with his 8-ways on both amd64 and i386.
Tested by: pluknet, sbruno, gianni, Nicholas Esborn
Reviewed by: jeff, jhb, sbruno
bytes. Remove bogus assertion and while here remove another too obvious
assertion.
Reported by: Fabian Keil <freebsd-listen@fabiankeil.de>
MFC after: 2 weeks
allocate all of them at attach time. This allows to avoid moving
keys around in the most-recently-used queue and needs no mutex
synchronization nor refcounting.
MFC after: 2 weeks
create reasonably large cache for the keys that is filled when
needed. The previous version was problematic for very large providers
(hundreds of terabytes or serval petabytes). Every terabyte of data
needs around 256kB for keys. Make the default cache limit big enough
to fit all the keys needed for 4TB providers, which will eat at most
1MB of memory.
MFC after: 2 weeks
bio_children > 1, g_destroy_bio() is never called and the bio
leaks. Fix this by calling g_destroy_bio() earlier, before the check.
Submitted by: Victor Balada Diaz <victor@bsdes.net> (initial version)
Approved by: pjd (mentor)
MFC after: 1 week
No FreeBSD version bump, the userland application to query the features will
be committed last and can serve as an indication of the availablility if
needed.
Sponsored by: Google Summer of Code 2010
Submitted by: kibab
Reviewed by: silence on geom@ during 2 weeks
X-MFC after: to be determined in last commit with code from this project
during boot.
Change the last argument of gets() to indicate a visibility flag and add
definitions for the numerical constants. Except for the value 2, gets()
will behave exactly the same, so existing consumers shouldn't break. We
only use it in two places, though.
Submitted by: lme (older version)
information that device is already suspended or that device is using
one-time key and suspend is not supported.
- 'geli suspend -a' silently skips devices that use one-time key, this is fine,
but because we log which device were suspended on the console, log also which
devices were skipped.
Before this change if you wanted to suspend your laptop and be sure that your
encryption keys are safe, you had to stop all processes that use file system
stored on encrypted device, unmount the file system and detach geli provider.
This isn't very handy. If you are a lucky user of a laptop where suspend/resume
actually works with FreeBSD (I'm not!) you most likely want to suspend your
laptop, because you don't want to start everything over again when you turn
your laptop back on.
And this is where geli suspend/resume steps in. When you execute:
# geli suspend -a
geli will wait for all in-flight I/O requests, suspend new I/O requests, remove
all geli sensitive data from the kernel memory (like encryption keys) and will
wait for either 'geli resume' or 'geli detach'.
Now with no keys in memory you can suspend your laptop without stopping any
processes or unmounting any file systems.
When you resume your laptop you have to resume geli devices using 'geli resume'
command. You need to provide your passphrase, etc. again so the keys can be
restored and suspended I/O requests released.
Of course you need to remember that 'geli suspend' won't clear file system
cache and other places where data from your geli-encrypted file system might be
present. But to get rid of those stopping processes and unmounting file system
won't help either - you have to turn your laptop off. Be warned.
Also note, that suspending geli device which contains file system with geli
utility (or anything used by 'geli resume') is not very good idea, as you won't
be able to resume it - when you execute geli(8), the kernel will try to read it
and this read I/O request will be suspended.