Reference objects changed from ACPI_TYPE_ANY to ACPI_TYPE_LOCAL_REFERENCE
in Oct. 2002, this may help systems where switching the cooler on failed.
We support both types for now until this sorts out.
The previous logic meant that if a user sets it to a minimal cooling value
acpi_thermal will not use higher cooling levels. Reverse the logic so that
the user requesting a level (say, 2) also gets 0 - 1 also.
PR: kern/61592
Submitted by: Andrew Thompson <andy@fud.org.nz>
it is still above the critical temperature on the next poll cycle. This
is a 10 second advance notice by default. Document the private
(non-standard) notify we will be using with devd(8).
the system. Also, decrease the poll interval to 10 seconds from 30
seconds. This is needed because some systems will report an invalid high
temperature for one poll cycle. It is suspected this is due to the
embedded controller timing out. A typical value is 138C for one cycle on a
system that is otherwise 65C. This prevents the system from prematurely
shutting down after one invalid reading. It will still shut down after 30
seconds of high temperature, which is the same as previous default
behavior.
Tested by: Scott Lambert <lambert AT lambertfam.org>
doesn't give them enough stack to do much before blowing away the pcb.
This adds MI and MD code to allow the allocation of an alternate kstack
who's size can be speficied when calling kthread_create. Passing the
value 0 prevents the alternate kstack from being created. Note that the
ia64 MD code is missing for now, and PowerPC was only partially written
due to the pmap.c being incomplete there.
Though this patch does not modify anything to make use of the alternate
kstack, acpi and usb are good candidates.
Reviewed by: jake, peter, jhb
Recent version of ACPI CA returns the package object which contains
object reference elements if the elements are named objects.
We need to be careful when you use acpi_ForeachPackageObject() in new
code...
This makes other power-management system (APM for now) to be able to
generate power profile change events (ie. AC-line status changes), and
other kernel components, not only the ACPI components, can be notified
the events.
- move subroutines in acpi_powerprofile.c (removed) to kern/subr_power.c
- call power_profile_set_state() also from APM driver when AC-line
status changes
- add call-back function for Crusoe LongRun controlling on power
profile changes for a example
Use ACPI_SUCCESS/ACPI_FAILURE consistently.
The AcpiGetInto* interfaces are obsoleted by ACPI_ALLOCATE_BUFFER.
Convert to using a kthread rather than timeout() to avoid problems
with the interpreter sleeping.
- Temporary fix a bug of Intel ACPI CA core code.
- Add OS layer ACPI mutex support. This can be disabled by
specifying option ACPI_NO_SEMAPHORES.
- Add ACPI threading support. Now that we have a dedicate taskqueue for
ACPI tasks and more ACPI task threads can be created by specifying option
ACPI_MAX_THREADS.
- Change acpi_EvaluateIntoBuffer() behavior slightly to reuse given
caller's buffer unless AE_BUFFER_OVERFLOW occurs. Also CM battery's
evaluations were changed to use acpi_EvaluateIntoBuffer().
- Add new utility function acpi_ConvertBufferToInteger().
- Add simple locking for CM battery and temperature updating.
- Fix a minor problem on EC locking.
- Make the thermal zone polling rate to be changeable.
- Change minor things on AcpiOsSignal(); in ACPI_SIGNAL_FATAL case,
entering Debugger is easier to investigate the problem rather than panic.
disabled unless verbose flag is set. Also fix some messages in terms
of English.
The critical messages and error messages in probe/attach routine are
unchanged by this commit.
- Give a guaranteed minimum cooling run time to avoid too frequent
cooling system On/Off switching. The minimum cooling run time can be
specified by hw.acpi.thermal.min_runtime in sec.
- Refine message printing (_AC-1 -> NONE).
- Add verbose mode enable/disable capability by hw.acpi.verbose in bool.
Reviewed by: acpi-jp@ folks
Monitor the system power profile, and use _SCP to adjust thermal zones
accordingly.
Simplify the behaviour of the timeout routine, and add some temporary
debugging.
is a parallel adjunct to active cooling, not a lesser evil. The _ACx
levels sort from 0 being hottest, not coolest.
Sanity check the returned temperature values, since we are having
trouble reading them on some systems.
Rearrange sysctl nodes a bit; this is probably close to the final layout.
Pass the softc, not the device_t to the Notify handler.
Don't invoke the Interpreter from callout context, as it may sleep.
Use AcpiOsQueueForExecution, which is called from taskqueue_swi.
- Reorder the acpi_* functions in a sensible fashion
- Add acpi_ForeachPackageObject and acpi_GetHandleInScope
- Use the new debugging layer/level names
- Implement most of the guts of the acpi_thermal module; passive cooling
isn't there yet, but active cooling should work.
- Implement power resource handling (acpi_powerres.c)
This compiles and mostly works, but my test coverage is small, so feedback
is welcome.
- Use __func__ instead of __FUNCTION.
- Support power-off to S3 or S5 (takawata)
- Enable ACPI debugging earlier (with a sysinit)
- Fix a deadlock in the EC code (takawata)
- Improve arithmetic and reduce the risk of spurious wakeup in
AcpiOsSleep.
- Add AcpiOsGetThreadId.
- Simplify mutex code (still disabled).
infrastructure. It's not perfect, but it's a lot better than what
we've been using so far. The following rules apply to this:
o BSD component names should be capitalised
o Layer names should be taken from the non-CA set for now. We
may elect to add some new BSD-specific layers later.
- Make it possible to turn off selective debugging flags or layers
by listing them in debug.acpi.layer or debug.acpi.level prefixed
with !.
- Fully implement support for avoiding nodes in the ACPI namespace.
Nodes may be listed in the debug.acpi.avoid environment variable;
these nodes and all their children will be ignored (although still
scanned over) by ACPI functions which scan the namespace. Multiple
nodes can be specified, separated by whitespace.
- Implement support for selectively disabling ACPI subsystem components
via the debug.acpi.disable environment variable. The following
components can be disabled:
o bus creation/scanning of the ACPI 'bus'
o children attachment of children to the ACPI 'bus'
o button the acpi_button control-method button driver
o ec the acpi_ec embedded-controller driver
o isa acpi replacement of PnP BIOS for ISA device discovery
o lid the control-method lid switch driver
o pci pci root-bus discovery
o processor CPU power/speed management
o thermal system temperature detection and control
o timer ACPI timecounter
Multiple components may be disabled by specifying their name(s)
separated by whitespace.
- Add support for ioctl registration. ACPI subsystem components may
register ioctl handlers with the /dev/acpi generic ioctl handler,
allowing us to avoid the need for a multitude of /dev/acpi* control
devices, etc.
ACPICA. Most of these are still works in progress. Support exists for:
- Fixed feature and control method power, lid and sleep buttons.
- Detection of ISA PnP devices using ACPI namespace.
- Detection of PCI root busses using ACPI namespace.
- CPU throttling and sleep states (incomplete)
- Thermal monitoring and cooling control (incomplete)
- Interface to platform embedded controllers (mostly complete)
- ACPI timer (incomplete)
- Simple userland control of sleep states.
- Shutdown and poweroff.