MISC CHANGES
Add a new async event- ISP_TARGET_NOTIFY_ACK, that will guarantee
eventual delivery of a NOTIFY ACK. This is tons better than just
ignoring the return from isp_notify_ack and hoping for the best.
Clean up the lower level lun enable code to be a bit more sensible.
Fix a botch in isp_endcmd which was messing up the sense data.
Fix notify ack for SRR to use a sensible error code in the case
of a reject.
Clean up and make clear what kind of firmware we've loaded and
what capabilities it has.
-----------
FULL (252 byte) SENSE DATA
In CTIOs for the ISP, there's only a limimted amount of space
to load SENSE DATA for associated CHECK CONDITIONS (24 or 26
bytes). This makes it difficult to send full SENSE DATA that can
be up to 252 bytes.
Implement MODE 2 responses which have us build the FCP Response
in system memory which the ISP will put onto the wire directly.
On the initiator side, the same problem occurs in that a command
status response only has a limited amount of space for SENSE DATA.
This data is supplemented by status continuation responses that
the ISP pushes onto the response queue after the status response.
We now pull them all together so that full sense data can be
returned to the periph driver.
This is supported on 23XX, 24XX and 25XX cards.
This is also preparation for doing >16 byte CDBs.
-----------
FC TAPE
Implement full FC-TAPE on both initiator and target mode side. This
capability is driven by firmware loaded, board type, board NVRAM
settings, or hint configuration options to enable or disable. This
is supported for 23XX, 24XX and 25XX cards.
On the initiator side, we pretty much just have to generate a command
reference number for each command we send out. This is FCP-4 compliant
in that we do this per ITL nexus to generate the allowed 1 thru 255
CRN.
In order to support the target side of FC-TAPE, we now pay attention
to more of the PRLI word 3 parameters which will tell us whether
an initiator wants confirmed responses. While we're at it, we'll
pay attention to the initiator view too and report it.
On sending back CTIOs, we will notice whether the initiator wants
confirmed responses and we'll set up flags to do so.
If a response or data frame is lost the initiator sends us an SRR
(Sequence Retransmit Request) ELS which shows up as an SRR notify
and all outstanding CTIOs are nuked with SRR Received status. The
SRR notify contains the offset that the initiator wants us to restart
the data transfer from or to retransmit the response frame.
If the ISP driver still has the CCB around for which the data segment
or response applies, it will retransmit.
However, we typically don't know about a lost data frame until we
send the FCP Response and the initiator totes up counters for data
moved and notices missing segments. In this case we've already
completed the data CCBs already and sent themn back up to the periph
driver. Because there's no really clean mechanism yet in CAM to
handle this, a hack has been put into place to complete the CTIO
CCB with the CAM_MESSAGE_RECV status which will have a MODIFY DATA
POINTER extended message in it. The internal ISP target groks this
and ctl(8) will be modified to deal with this as well.
At any rate, the data is retransmitted and an an FCP response is
sent. The whole point here is to successfully complete a command
so that you don't have to depend on ULP (SCSI) to have to recover,
which in the case of tape is not really possible (hence the name
FC-TAPE).
Sponsored by: Spectralogic
MFC after: 1 month
not by some hint setting. Do more preparations for FC-Tape.
Clean up resource counting for 24XX or later chipsets so
we find out after EXEC_FIRMWARE what is actually supported.
Set target mode exchange count based upon whether or not
we are supporting simultaneous target/initiator mode. Clean
up some old (pre-24XX) xfwoption and zfwoption issues.
Sponsored by: Spectralogic
MFC after: 3 days
and crosschecks against firmware documentation. We now check and report
FC firmware attributes and at least are now prepared for the upper 48 bits
of f/w attributes (which are probably for the 8100 or later cards). This
involed changing how inbits and outbits are calculated for varios commands,
hopefully clearer and cleaner. This also caused me to clean up the actual
mailbox register usage. Finally, we are now unconditionally using a CRN
for initiator mode.
A longstanding issue with the 2400/2500 is that they do *not* support
a "Prefer PTP followed by loop", which explains why enabling that
caused the f/w to crash.
A slightly more invasive change is to let the firmware load entirely
drive whether multi_id support is enabled or not.
Sponsored by: Spectralogic
MFC after: 1 week
is actually broken, or needs a BIOS upgrade for 64 bit loads, but this uncovered
a couple of misplaced opcode definitions and some missing continual mbox command
cases, so might as well update them here.
We also revive loop down freezes. We also externaliz within isp
isp_prt_endcmd so something outside the core module can print
something about a command completing. Also some work in progress to
assist in handling timed out commands better.
Partially Sponsored by: Panasas
Approved by: re (kib)
MFC after: 1 month
- Allocate coherent DMA memory for the request/response queue area and
and the FC scratch area.
These changes allow isp(4) to work properly on sparc64 with usage of the
IOMMU streaming buffers enabled.
Approved by: mjacob
MFC after: 2 weeks
Untangle some of the confusion about what role means when it's in the FCPARAM/SDPARAM
or isp_fc/isp_spi structures. This fixed a problem about seeing targets appear if you've
turned off autologin and find them, or rather don't, via camcontrol rescan.
MFC after: 1 month
32 bit handles. The RIO (reduced interrupt operation) and fast posting
for the parallel SCSI cards were all 16 bit handles. Furthermore,
target mode parallel SCSI only can have 16 bit handles.
Use part of a supplied patch to switch over to using 32 bit handles.
Be a bit more conservative here and only do this for parallel SCSI
for the 12160 (Ultra3) cards. There were a lot of marginal Ultra2
cards, and, frankly, few are findable now for testing.
Fix the target handle routine to only do 16 bit handles for parallel
SCSI cards. This is okay because the upper sixteen bits of the new
32 bit handles is a sequence number to help protect against duplicate
completions. This would be very unlikely to happen with parallel
SCSI target mode, and wasn't present before, so we're no worse off
than we used to be.
While we're at it, finally split the async mailbox completion handlers
into FC and parallel SCSI functions. This makes it much cleaner and
easier to figure out what is or isn't a legal async mailbox completion
code for different card classes.
PR: kern/144250
Submitted partially by: Charles D
MFC after: 1 week
numbers and handle types in rational way. This will better protect from
(unwittingly) dealing with stale handles/commands.
Fix the watchdog timeout code to better protect itself from mistakes.
If we run an abort on a putatively timed out command, the command
may in fact get completed, so check to make sure the command we're
timing it out is still around. If the abort succeeds, btw, the command
should get returned via a different path.
firmware loading bugs.
Target mode support has received some serious attention to make it
more usable and stable.
Some backward compatible additions to CAM have been made that make
target mode async events easier to deal with have also been put
into place.
Further refinement and better support for NP-IV (N-port Virtualization)
is now in place.
Code for release prior to RELENG_7 has been stripped away for code clarity.
Sponsored by: Copan Systems
Reviewed by: scottl, ken, jung-uk kim
Approved by: re
put out a ispreqt2e_t structure onto the request queue- not a ispreqt2_t
structure. I forgot that the 23XX can use a t2 structure.
Approved by: re (ken, implicitly)
MFC after: 3 days
to put out a ispreqt3e_t structure onto the request queue-
not a ispreqt3_t structure. We weren't. This turns out only
to really matter for big endian machines.
Approved by: re (ken)
MFC after: 3 days
Seems to work on RELENG_4 through -current and also on sparc64
now. There may still be some issues with the auto attach/detach
code to sort out.
MFC after: 3 days
When the linux port changes were imported which split the
target command list to be separate from the initiator command
list and the handle format changed to encode a type in the handle
the implications to the function isp_handle_index (which only
the NetBSD/OpenBSD/FreeBSD ports use) were overlooked.
The fault is twofold: first, the index into the DMA maps
in isp_pci is wrong because a target command handle with
the type bit left in place caused a bad index (and panic)
into dma map. Secondly, the assumption of the array
of DMA maps in either PCS or SBUS attachment structures is
that there is a linear mapping between handle index and
DMA map index. This can no longer be true if there are
overlapping index spaces for initiator mode and target
mode commands.
These changes bandaid around the problem by forcing us
to not have simultaneous dual roles and doing the appropriate
masking to make sure things are indexed correctly. A longer
term fix is being devloped.
tokens into the common isp_osinfo structure instead of being
in bus specific structures. This allows us to implement
a SYNC_REG MEMORYBARRIER call (using bus_space_barrier)
and also reduce the amount of bus specific wrapper structure
usages in isp_pci && isp_sbus.
MFC after: 3 days
early, we haven't set board type, so we can't correctly check for
some options. Fix this by splitting option setting/getting into
generic, pci and then later board specific, option setting/getting.
This was noticed when setting 'iid' (or 'hard loop id') didn't work
all of a sudden.
Noticed by: Mike Drangula (thanks!) via Jung-uk Kim (thanks!)
Either they're there early and the ispfw sets have
registered themselves, or they're not.
The module dependency stuff isn't quite what we want
anyway. If the user doesn't want the load placed on
system memory by loading the firmware, they don't
specify it to be loaded (either by being linked in
or via being a module to be loaded and then hooked
in with firmware(9)). It doesn't then make sense to
then override what they want by pulling it in anyway.
This might be able to work if we were able to pull in
just exactly what we needed for the card we have- but
that's an optimization left for the future.
and provied an isp_control entry point so that the outer layers can
do PLOGI/LOGO explicitly. Add MS IOCB support. This completes the cycle
for base support for SMI-S.
gone device timers and zombie state entries. There are tunables
that can be used to select a number of parameters.
loop_down_limit - how long to wait for loop to come back up before
declaring
all devices dead (default 300 seconds)
gone_device_time- how long to wait for a device that has appeared
to leave the loop or fabric to reappear (default 30 seconds)
Internal tunables include (which should be externalized):
quick_boot_time- how long to wait when booting for loop to come up
change_is_bad- whether or not to accept devices with the same
WWNN/WWPN that reappear at a different PortID as being the 'same'
device.
Keen students of some of the subtle issues here will ask how
one can keep devices from being re-accepted at all (the answer
is to set a gone_device_time to zero- that effectively would
be the same thing).
required by arches like sparc64 (not yet implemented) and sun4v where there
are seperate IOMMU's for each PCI bus... For all other arches, it will
end up returning NULL, which makes it a no-op...
Convert a few drivers (the ones we've been working w/ on sun4v) to the
new convection... Eventually all drivers will need to replace the parent
tag of NULL, w/ bus_get_dma_tag(dev), though dev is usually different for
each driver, and will require hand inspection...
Reviewed by: scottl (earlier version)
it ended up defaulting to ISP_ROLE_NONE. My testing hadn't caught it
because I was deliberatly setting role via ioctl.
Thanks to user Toni for lending me an alpha to test this on.
MFC after: 0 days