2. Update a comment. We now restore much more than RTC updates and
interrupts.
3. Order change. Stop interrupts by writing to RTC_STATUSB,
restore rate bits for the interrupts by writing to RTC_STATUSA,
then enable interrupts again.
This seems to be done perfectly backwards in startrtclock().
Otherwise, the idea for this change was obtained from
startrtclock().
4. Don't stop the clock (RTCB_HALT). We only program some control bits
and don't want to stop the clock.
5. (Not really related.) Add caveats to the comment about timer_restore().
The update is non-atomic since locking is not done.
On locking:
6. rtcin() and writertc() are locked() adequately by splhigh() in RELENG_4,
but this locking is null in -current.
7. Doing things in the correct order in (3) combined with (6) is probably
enough locking for rtcrestore() in RELENG_4. In -current, the
writertc()'s race with rtcintr() unless the BIOS disables RTC interrupts.
Submitted by: bde (including commit message)
MFC after: 1 week
NB: But it will enable it in all kernels not having options "NO_GEOM"
Put the GEOM related options into the intended order.
Add "options NO_GEOM" to all kernel configs apart from NOTES.
In some order of controlled fashion, the NO_GEOM options will be
removed, architecture by architecture in the coming days.
There are currently three known issues which may force people to
need the NO_GEOM option:
boot0cfg/fdisk:
Tries to update the MBR while it is being used to control
slices. GEOM does not allow this as a direct operation.
SCSI floppy drives:
Appearantly the scsi-da driver return "EBUSY" if no media
is inserted. This is wrong, it should return ENXIO.
PC98:
It is unclear if GEOM correctly recognizes all variants of
PC98 disklabels. (Help Wanted! I have neither docs nor HW)
These issues are all being worked.
Sponsored by: DARPA & NAI Labs.
testing any modifications to them, they shouldn't even bother with
disklabels in the first place and they are just plain obsolete old
hardware which should be axed entirely before 5.0-R IMO.
Sponsored by: DARPA & NAI Labs.
if compiling with I686_CPU as a target. CPU_DISABLE_SSE will prevent
this from happening and will guarantee the code is not compiled in.
I am still not happy with this, but gcc is now generating code that uses
these instructions if you set CPUTYPE to p3/p4 or athlon-4/mp/xp or higher.
-finstrument-functions instead of -mprofiler-epilogue. The former
works essentially the same as the latter but has a higher overhead
(about 22 more bytes per function for passing unused args to the
profiling functions).
Removed all traces of the IDENT Makefile variable, which had been
reduced to just a place for holding profiling's contribution to CFLAGS
(the IDENT that gives the kernel identity was renamed to KERN_IDENT).
- It actually works this time, honest!
- Fine grained TLB shootdowns for SMP on i386. IPI's are very expensive,
so try and optimize things where possible.
- Introduce ranged shootdowns that can be done as a single IPI.
- PG_G support for i386
- Specific-cpu targeted shootdowns. For example, there is no sense in
globally purging the TLB cache for where we are stealing a page from
the local unshared process on the local cpu. Use pm_active to track
this.
- Add some instrumentation for the tlb shootdown code.
- Rip out SMP code from <machine/cpufunc.h>
- Try and fix some very bogus PG_G and PG_PS interactions that were bad
enough to cause vm86 bios calls to break. vm86 depended on our existing
bugs and this was the cause of the VESA panics last time.
- Fix the silly one-line error that caused the 'panic: bad pte' last time.
- Fix a couple of other silly one-line errors that should have caused more
pain than they did.
Some more work is needed:
- pmap_{zero,copy}_page[_idle]. These can be done without IPI's if we
have a hook in cpu_switch.
- The IPI handlers need some cleanup. I have a bogus %ds load that can
be avoided.
- APTD handling is rather bogus and appears to be a large source of
global TLB IPI shootdowns for no really good reason.
I see speedups of between 1.5% and ~4% on buildworlds in a while 1 loop.
I expect to see a bigger difference when there is significant pageout
activity or the system otherwise has memory shortages.
I have backed out a few optimizations that I had been using over the last
few days in order to be a little more conservative. I'll revisit these
again over the next few days as the dust settles.
New option: DISABLE_PG_G - In case I missed something.
when machdep.tsc_freq returned a negative number on a 2.2GHz Xeon.
Submitted by: Brian Harrison <bharrison@ironport.com>
Reviewed by: phk
MFC after: 1 week
make_dev() to create device nodes for each of the serial port channels
(ttym%d and cuam%d respectively, as borrowed from MAKEDEV). This allows
the rc driver to work in 5.0. I've tested it with only one card, but
will try sticking in a second card tomorrow and see what happens.
the case of VM86 calls from the kernel was broken, so this bug was not
a security hole.
PR: 36710
Submitted by: David Xu <davidx@viasoft.com.cn> (version for RELENG_4)
MFC after: 3 days
i386/ia64/alpha - catch up to sparc64/ppc:
- replace pmap_kernel() with refs to kernel_pmap
- change kernel_pmap pointer to (&kernel_pmap_store)
(this is a speedup since ld can set these at compile/link time)
all platforms (as suggested by jake):
- gc unused pmap_reference
- gc unused pmap_destroy
- gc unused struct pmap.pm_count
(we never used pm_count - we track address space sharing at the vmspace)
timecounter will be used starting at the next second, which is
good enough for sysctl purposes. If better adjustment is needed
the NTP PLL should be used.
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
and cpu_critical_exit() and moves associated critical prototypes into their
own header file, <arch>/<arch>/critical.h, which is only included by the
three MI source files that need it.
Backout and re-apply improperly comitted syntactical cleanups made to files
that were still under active development. Backout improperly comitted program
structure changes that moved localized declarations to the top of two
procedures. Partially re-apply one of the program structure changes to
move 'mask' into an intermediate block rather then in three separate
sub-blocks to make the code more readable. Re-integrate bug fixes that Jake
made to the sparc64 code.
Note: In general, developers should not gratuitously move declarations out
of sub-blocks. They are where they are for reasons of structure, grouping,
readability, compiler-localizability, and to avoid developer-introduced bugs
similar to several found in recent years in the VFS and VM code.
Reviewed by: jake
general cleanup of the API. The entire API now consists of two functions
similar to the pre-KSE API. The suser() function takes a thread pointer
as its only argument. The td_ucred member of this thread must be valid
so the only valid thread pointers are curthread and a few kernel threads
such as thread0. The suser_cred() function takes a pointer to a struct
ucred as its first argument and an integer flag as its second argument.
The flag is currently only used for the PRISON_ROOT flag.
Discussed on: smp@
back into the calling MD code. The MD code must ensure no races between
checking the astpening flag and returning to usermode.
Submitted by: peter (ia64 bits)
Tested on: alpha (peter, jeff), i386, ia64 (peter), sparc64
disablement assumptions in kern_fork.c by adding another API call,
cpu_critical_fork_exit(). Cleanup the td_savecrit field by moving it
from MI to MD. Temporarily move cpu_critical*() from <arch>/include/cpufunc.h
to <arch>/<arch>/critical.c (stage-2 will clean this up).
Implement interrupt deferral for i386 that allows interrupts to remain
enabled inside critical sections. This also fixes an IPI interlock bug,
and requires uses of icu_lock to be enclosed in a true interrupt disablement.
This is the stage-1 commit. Stage-2 will occur after stage-1 has stabilized,
and will move cpu_critical*() into its own header file(s) + other things.
This commit may break non-i386 architectures in trivial ways. This should
be temporary.
Reviewed by: core
Approved by: core
not removing tabs before "__P((", and not outdenting continuation lines
to preserve non-KNF lining up of code with parentheses. Switch to KNF
formatting and/or rewrap the whole prototype in some cases.
Problem:
selwakeup required calling pfind which would cause lock order
reversals with the allproc_lock and the per-process filedesc lock.
Solution:
Instead of recording the pid of the select()'ing process into the
selinfo structure, actually record a pointer to the thread. To
avoid dereferencing a bad address all the selinfo structures that
are in use by a thread are kept in a list hung off the thread
(protected by sellock). When a selwakeup occurs the selinfo is
removed from that threads list, it is also removed on the way out
of select or poll where the thread will traverse its list removing
all the selinfos from its own list.
Problem:
Previously the PROC_LOCK was used to provide the mutual exclusion
needed to ensure proper locking, this couldn't work because there
was a single condvar used for select and poll and condvars can
only be used with a single mutex.
Solution:
Introduce a global mutex 'sellock' which is used to provide mutual
exclusion when recording events to wait on as well as performing
notification when an event occurs.
Interesting note:
schedlock is required to manipulate the per-thread TDF_SELECT
flag, however if given its own field it would not need schedlock,
also because TDF_SELECT is only manipulated under sellock one
doesn't actually use schedlock for syncronization, only to protect
against corruption.
Proc locks are no longer used in select/poll.
Portions contributed by: davidc
There is some unresolved badness that has been eluding me, particularly
affecting uniprocessor kernels. Turning off PG_G helped (which is a bad
sign) but didn't solve it entirely. Userland programs still crashed.
enabled in critical sections and streamline critical_enter() and
critical_exit().
This commit allows an architecture to leave interrupts enabled inside
critical sections if it so wishes. Architectures that do not wish to do
this are not effected by this change.
This commit implements the feature for the I386 architecture and provides
a sysctl, debug.critical_mode, which defaults to 1 (use the feature). For
now you can turn the sysctl on and off at any time in order to test the
architectural changes or track down bugs.
This commit is just the first stage. Some areas of the code, specifically
the MACHINE_CRITICAL_ENTER #ifdef'd code, is strictly temporary and will
be cleaned up in the STAGE-2 commit when the critical_*() functions are
moved entirely into MD files.
The following changes have been made:
* critical_enter() and critical_exit() for I386 now simply increment
and decrement curthread->td_critnest. They no longer disable
hard interrupts. When critical_exit() decrements the counter to
0 it effectively calls a routine to deal with whatever interrupts
were deferred during the time the code was operating in a critical
section.
Other architectures are unaffected.
* fork_exit() has been conditionalized to remove MD assumptions for
the new code. Old code will still use the old MD assumptions
in regards to hard interrupt disablement. In STAGE-2 this will
be turned into a subroutine call into MD code rather then hardcoded
in MI code.
The new code places the burden of entering the critical section
in the trampoline code where it belongs.
* I386: interrupts are now enabled while we are in a critical section.
The interrupt vector code has been adjusted to deal with the fact.
If it detects that we are in a critical section it currently defers
the interrupt by adding the appropriate bit to an interrupt mask.
* In order to accomplish the deferral, icu_lock is required. This
is i386-specific. Thus icu_lock can only be obtained by mainline
i386 code while interrupts are hard disabled. This change has been
made.
* Because interrupts may or may not be hard disabled during a
context switch, cpu_switch() can no longer simply assume that
PSL_I will be in a consistent state. Therefore, it now saves and
restores eflags.
* FAST INTERRUPT PROVISION. Fast interrupts are currently deferred.
The intention is to eventually allow them to operate either while
we are in a critical section or, if we are able to restrict the
use of sched_lock, while we are not holding the sched_lock.
* ICU and APIC vector assembly for I386 cleaned up. The ICU code
has been cleaned up to match the APIC code in regards to format
and macro availability. Additionally, the code has been adjusted
to deal with deferred interrupts.
* Deferred interrupts use a per-cpu boolean int_pending, and
masks ipending, spending, and fpending. Being per-cpu variables
it is not currently necessary to lock; bus cycles modifying them.
Note that the same mechanism will enable preemption to be
incorporated as a true software interrupt without having to
further hack up the critical nesting code.
* Note: the old critical_enter() code in kern/kern_switch.c is
currently #ifdef to be compatible with both the old and new
methodology. In STAGE-2 it will be moved entirely to MD code.
Performance issues:
One of the purposes of this commit is to enhance critical section
performance, specifically to greatly reduce bus overhead to allow
the critical section code to be used to protect per-cpu caches.
These caches, such as Jeff's slab allocator work, can potentially
operate very quickly making the effective savings of the new
critical section code's performance very significant.
The second purpose of this commit is to allow architectures to
enable certain interrupts while in a critical section. Specifically,
the intention is to eventually allow certain FAST interrupts to
operate rather then defer.
The third purpose of this commit is to begin to clean up the
critical_enter()/critical_exit()/cpu_critical_enter()/
cpu_critical_exit() API which currently has serious cross pollution
in MI code (in fork_exit() and ast() for example).
The fourth purpose of this commit is to provide a framework that
allows kernel-preempting software interrupts to be implemented
cleanly. This is currently used for two forward interrupts in I386.
Other architectures will have the choice of using this infrastructure
or building the functionality directly into critical_enter()/
critical_exit().
Finally, this commit is designed to greatly improve the flexibility
of various architectures to manage critical section handling,
software interrupts, preemption, and other highly integrated
architecture-specific details.
on for a while:
- fine grained TLB shootdown for SMP on i386
- ranged TLB shootdowns.. eg: specify a range of pages to shoot down with
a single IPI, since the IPI is very expensive. Adjust some callers
that used to trigger this inside tight loops to do a ranged shootdown
at the end instead.
- PG_G support for SMP on i386 (options ENABLE_PG_G)
- defer PG_G activation till after we decide what we are going to do with
PSE and the 4MB pages at the start of the kernel. This should solve
some rumored strangeness about stale PG_G entries getting stuck
underneath the 4MB pages.
- add some instrumentation for the fine TLB shootdown
- convert some asm instruction wrappers from functions to inlines. gcc
seems to do a fair bit better with this.
- [temporarily!] pessimize the tlb shootdown IPI handlers. I will fix
this again shortly.
This has been working fairly well for me for a while, but I have tweaked
it again prior to commit since my last major testing round. The only
outstanding problem that I know of is PG_G related, which is why there
is an option for it (not on by default for SMP). I have seen a world
speedups by a few percent (as much as 4 or 5% in one case) but I have
*not* accurately measured this - I am a bit sceptical of these numbers.
New locks are:
- pgrpsess_lock which locks the whole pgrps and sessions,
- pg_mtx which protects the pgrp members, and
- s_mtx which protects the session members.
Please refer to sys/proc.h for the coverage of these locks.
Changes on the pgrp/session interface:
- pgfind() needs the pgrpsess_lock held.
- The caller of enterpgrp() is responsible to allocate a new pgrp and
session.
- Call enterthispgrp() in order to enter an existing pgrp.
- pgsignal() requires a pgrp lock held.
Reviewed by: jhb, alfred
Tested on: cvsup.jp.FreeBSD.org
(which is a quad-CPU machine running -current)
is not configured. Including <isa/isavar.h> when it is not used is
harmful as well as bogus, since it includes "isa_if.h" which is not
generated when isa is not configured.
This was fixed in 1999 but was broken by unconditionalizing PNPBIOS.
mutex releases to not require flags for the cases when preemption is
not allowed:
The purpose of the MTX_NOSWITCH and SWI_NOSWITCH flags is to prevent
switching to a higher priority thread on mutex releease and swi schedule,
respectively when that switch is not safe. Now that the critical section
API maintains a per-thread nesting count, the kernel can easily check
whether or not it should switch without relying on flags from the
programmer. This fixes a few bugs in that all current callers of
swi_sched() used SWI_NOSWITCH, when in fact, only the ones called from
fast interrupt handlers and the swi_sched of softclock needed this flag.
Note that to ensure that swi_sched()'s in clock and fast interrupt
handlers do not switch, these handlers have to be explicitly wrapped
in critical_enter/exit pairs. Presently, just wrapping the handlers is
sufficient, but in the future with the fully preemptive kernel, the
interrupt must be EOI'd before critical_exit() is called. (critical_exit()
can switch due to a deferred preemption in a fully preemptive kernel.)
I've tested the changes to the interrupt code on i386 and alpha. I have
not tested ia64, but the interrupt code is almost identical to the alpha
code, so I expect it will work fine. PowerPC and ARM do not yet have
interrupt code in the tree so they shouldn't be broken. Sparc64 is
broken, but that's been ok'd by jake and tmm who will be fixing the
interrupt code for sparc64 shortly.
Reviewed by: peter
Tested on: i386, alpha
and it's associated state variables: icu_lock with the name "icu". This
renames the imen_mtx for x86 SMP, but also uses the lock to protect
access to the 8259 PIC on x86 UP. This also adds an appropriate lock to
the various Alpha chipsets which fixes problems with Alpha SMP machines
dropping interrupts with an SMP kernel.
for this file, but here goes nothing. This was my first attempt at
tidying up this file. Unfortunately, it just exposes many more horrors
in the code itself that had been masked by the eyesore that was there
before. I think this just needs to be put out of its misery.
- The MD functions critical_enter/exit are renamed to start with a cpu_
prefix.
- MI wrapper functions critical_enter/exit maintain a per-thread nesting
count and a per-thread critical section saved state set when entering
a critical section while at nesting level 0 and restored when exiting
to nesting level 0. This moves the saved state out of spin mutexes so
that interlocking spin mutexes works properly.
- Most low-level MD code that used critical_enter/exit now use
cpu_critical_enter/exit. MI code such as device drivers and spin
mutexes use the MI wrappers. Note that since the MI wrappers store
the state in the current thread, they do not have any return values or
arguments.
- mtx_intr_enable() is replaced with a constant CRITICAL_FORK which is
assigned to curthread->td_savecrit during fork_exit().
Tested on: i386, alpha
- The MI portions of struct globaldata have been consolidated into a MI
struct pcpu. The MD per-CPU data are specified via a macro defined in
machine/pcpu.h. A macro was chosen over a struct mdpcpu so that the
interface would be cleaner (PCPU_GET(my_md_field) vs.
PCPU_GET(md.md_my_md_field)).
- All references to globaldata are changed to pcpu instead. In a UP kernel,
this data was stored as global variables which is where the original name
came from. In an SMP world this data is per-CPU and ideally private to each
CPU outside of the context of debuggers. This also included combining
machine/globaldata.h and machine/globals.h into machine/pcpu.h.
- The pointer to the thread using the FPU on i386 was renamed from
npxthread to fpcurthread to be identical with other architectures.
- Make the show pcpu ddb command MI with a MD callout to display MD
fields.
- The globaldata_register() function was renamed to pcpu_init() and now
init's MI fields of a struct pcpu in addition to registering it with
the internal array and list.
- A pcpu_destroy() function was added to remove a struct pcpu from the
internal array and list.
Tested on: alpha, i386
Reviewed by: peter, jake
- Now that apm loadable module can inform its existence to other kernel
components (e.g. i386/isa/clock.c:startrtclock()'s TCS hack).
- Exchange priority of SI_SUB_CPU and SI_SUB_KLD for above purpose.
- Add simple arbitration mechanism for APM vs. ACPI. This prevents
the kernel enables both of them.
- Remove obsolete `#ifdef DEV_APM' related code.
- Add abstracted interface for Powermanagement operations. Public apm(4)
functions, such as apm_suspend(), should be replaced new interfaces.
Currently only power_pm_suspend (successor of apm_suspend) is implemented.
Reviewed by: peter, arch@ and audit@
- sys/pc98/pc98/npx.c 1.87 (2001/09/15; author: imp)
I don't think pc98 has acpi at all, so ifdef the acpi attachments for
now.
This completes merging sys/pc98/pc98/npx.c into sys/i386/isa/npx.c so
that the former can be removed.
and the irq are different for pc98, and are not very well handled (we
use a historical mess of hard-coded values, values from header files
and values from hints).
- 1.58 (2000/09/01; author: kato)
Fixed FPU_ERROR_BROKEN code. It had old-isa code.
- 1.33 (1998/03/09; author: kato)
Make FPU_ERROR_BROKEN a new-style option.
- 1.7 (1996/10/09; author: asami)
Make sure FPU is recognized for non-Intel CPUs.
The log for rev.1.7 should have said something like:
Added FPU_ERROR_BROKEN option. This forces a successful probe for
exception 16, so that hardware with a broken FPU error signal can sort
of work.
Use the normal interrupt handler (npx_intr()) instead of a special
probe-time interrupt handler, although this causes problems due to
the bus_teardown_intr() not actually even tearing down the interrupt
(these problems were avoided by doing interrupt attachment for the
special interrupt handler directly). Fixed minor bitrot in comments.
The reason for the npxprobe()/npxprobe1() split mostly went away at
about the same time it was made (in 1992 or 1993 just before the
beginning of history). 386BSD ran all probes with interrupts completely
masked, and I didn't want to disturb this when I added an irq probe
to npxprobe(). An irq (not necessarily npx) must be acked for at least
external npx's to take the cpu out of the wait state that it enters
when an npx error occurs, so the probe must be done with a suitable
irq unmasked. npxprobe() went to great lengths to unmask precisely
the npx irq.
Running probes with all interrupts masked was never really needed in
FreeBSD, since FreeBSD always masked interrupts well enough using
splhigh(), but it wasn't until rev.1.48 (1995/12/12) of autoconf.c
that all probes were run with CPU interrupts enabled. This permits
npxprobe() to probe its irq using normal interrupt resources. Note
that most drivers still can't depend on this. It depends on the
interrupt handler being fast and the irq not being shared.
lost when the buggy code goes away completely:
- don't assume that the npx irq number is >= 8. Rev.1.73 only reversed
part of the hard-coding of it to 13 in rev.1.66.
- backed out the part of rev.1.84 that added a highly confused comment
about an enable_intr() being "highly bogus". The whole reason for
existence of npxprobe() (separate from the main probe, npxprobe1())
is to handle the complications to make this enable_intr() safe.
- backed out the part of rev.1.94 that modified npxprobe(). It mainly
broke the enable_intr() to restore_intr(). Restoring the interrupt
state in a nested way is precisely what is not wanted here. It was
harmless in practice because npxprobe() is called with interrupts
enabled, so restoring the interrupt state enables interrupts. Most
of npxprobe() is a no-op for the same reason...
code in ipl.s and icu_ipl.s that used them was removed when the
interrupt thread system was committed. Debuggers also knew about
Xresume* because these labels hide the real names of the interrupt
handlers (Xintr*), and debuggers need to special-case interrupt
handlers to get the interrupt frame.
Both gdb and ddb will now use the Xintr* and Xfastintr* symbols to
detect interrupt frames. Fast interrupt frames were never identified
correctly before, so this fixes the problem of the running stack
frame getting lost in a ddb or gdb trace generated from a fast
interrupt - e.g. when debugging a simple infinite loop in the kernel
using a serial console, the frame containing the loop would never
appear in a gdb or ddb trace.
Reviewed by: jhb, bde
already does the initialization (though it didn't set pca_initialized, so
we always initialized twice) and since attach calls make_dev(), there's no
way that pcaopen() can be called before pcaattach().
The type of bus_space_tag_t is now a pointer to bus_space_tag structure,
and the bus_space_tag structure saves pointers to functions for direct
access and relocate access.
Added bsh_bam member to the bus_space_handle structure, it saves access
method either direct access or relocate access which is called by
bus_space_* functions.
Added the mecia device support. If the bs_da and bs_ra in bus tag are set
NEPC_io_space_tag and NEPC_mem_space_tag respectively, new bus_space stuff
changes the register of mecia automatically for 16bit access.
Obtained from: NetBSD/pc98
the current interrupt thread routines will guarantee the condition this is
checking for at a higher level but inthand_add() and inthand_remove() as
they currently exist don't satisfy this condition. (Which does need to be
fixed but which will take a bit more work.) This fixes shared interrupts.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
with system statistics monitoring tools (such as systat, vmstat...)
because of stopping RTC interrupts generation.
Restore all the timers (RTC and i8254) atomically.
Reviewed by: bde
MFC after: 1 week
flags with interrupts disabled to see if we should call ast() during
doreti. This was mostly submitted by Bruce, but his original patch did
the looping in ast() in assembly rather than in the ast() function itself.
Once we've actually called into the ast() function, it's cheaper to just
loop inside the function rather than returning from the function,
performing the check, and then calling the function again. However, we
can optimize the first check to avoid calling the function at all.
Other architectures may choose to implement this optimization if they
wish but it is not required for correct operation.
Submitted by: bde
the process of exiting the kernel. The ast() function now loops as long
as the PS_ASTPENDING or PS_NEEDRESCHED flags are set. It returns with
preemption disabled so that any further AST's that arrive via an
interrupt will be delayed until the low-level MD code returns to user
mode.
- Use u_int's to store the tick counts for profiling purposes so that we
do not need sched_lock just to read p_sticks. This also closes a
problem where the call to addupc_task() could screw up the arithmetic
due to non-atomic reads of p_sticks.
- Axe need_proftick(), aston(), astoff(), astpending(), need_resched(),
clear_resched(), and resched_wanted() in favor of direct bit operations
on p_sflag.
- Fix up locking with sched_lock some. In addupc_intr(), use sched_lock
to ensure pr_addr and pr_ticks are updated atomically with setting
PS_OWEUPC. In ast() we clear pr_ticks atomically with clearing
PS_OWEUPC. We also do not grab the lock just to test a flag.
- Simplify the handling of Giant in ast() slightly.
Reviewed by: bde (mostly)
we are required to do if we let user processes use the extra 128 bit
registers etc.
This is the base part of the diff I got from:
http://www.issei.org/issei/FreeBSD/sse.html
I believe this is by: Mr. SUZUKI Issei <issei@issei.org>
SMP support apparently by: Takekazu KATO <kato@chino.it.okayama-u.ac.jp>
Test code by: NAKAMURA Kazushi <kaz@kobe1995.net>, see
http://kobe1995.net/~kaz/FreeBSD/SSE.en.html
I have fixed a couple of style(9) deviations. I have some followup
commits to fix a couple of non-style things.
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
removed and a minimal number of changes to make it compile in the new
location.
# I have a fully converted on a disk that may be crashed. If it is
# crashed, I'll redo the work.
- Replace some very poorly thought out API hacks that should have been
fixed a long while ago.
- Provide some much more flexible search functions (resource_find_*())
- Use strings for storage instead of an outgrowth of the rather
inconvenient temporary ioconf table from config(). We already had a
fallback to using strings before malloc/vm was running anyway.
- move the sysctl code to kern_intr.c
- do not use INTRCNT_COUNT, but rather eintrcnt - intrcnt to determine
the length of the intrcnt array
- move the declarations of intrnames, eintrnames, intrcnt and eintrcnt
from machine-dependent include files to sys/interrupt.h
- remove the hw.nintr sysctl, it is not needed.
- fix various style bugs
Requested by: bde
Reviewed by: bde (some time ago)
simpler for npx exceptions that start as traps (no assembly required...)
and works better for npx exceptions that start as interrupts (there is
no longer a problem for nested interrupts).
Submitted by: original (pre-SMPng) version by luoqi
npxsave() went to great lengths to excecute fnsave with interrupts
enabled in case executing it froze the CPU. This case can't happen,
at least for Intel CPU/NPX's. Spurious IRQ13's don't imply spurious
freezes. Anyway, the complications were usually no-ops because IRQ13
is not used on i486's and newer CPUs, and because SMPng broke them in
rev.1.84. Forcible enabling of interrupts was changed to
write_eflags(old_eflags), but since SMPng usually calls npxsave() from
cpu_switch() with interrupts disabled, write_eflags() usually just
kept interrupts disabled.
npxinit() didn't have the usual race because it doesn't save to curpcb,
but it may have had a worse form of it since it uses the npx when it
doesn't "own" it. I'm not sure if locking prevented this. npxinit()
is normally caled with the proc lock but not sched_lock.
Use a critical region to protect pushing of curproc's npx state to
curpcb in npxexit(). Not doing so was harmless since it at worst
saved a wrong state to a dieing pcb.
handling, SMPng always switches the npx context away from curproc
before calling the handler, so the handler always paniced. When using
exception 16 exception handling, SMPng sometimes switches the npx
context away from curproc before calling the handler, so the handler
sometimes paniced. Also, we didn't lock the context while using it,
so we sometimes didn't detect the switch and then paniced in a less
controlled way.
Just lock the context while using it, and return without doing anything
except clearing the busy latch if the context is not for curproc. This
fixes the exception 16 case and makes the IRQ13 case harmless. In both
cases, the instruction that caused the exception is restarted and the
exception repeats. In the exception 16 case, we soon get an exception
that can be handled without doing anything special. In the IRQ13 case,
we get an easy to kill hung process.
other "system" header files.
Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.
Sort sys/*.h includes where possible in affected files.
OK'ed by: bde (with reservations)
been made machine independent and various other adjustments have been made
to support Alpha SMP.
- It splits the per-process portions of hardclock() and statclock() off
into hardclock_process() and statclock_process() respectively. hardclock()
and statclock() call the *_process() functions for the current process so
that UP systems will run as before. For SMP systems, it is simply necessary
to ensure that all other processors execute the *_process() functions when the
main clock functions are triggered on one CPU by an interrupt. For the alpha
4100, clock interrupts are delievered in a staggered broadcast fashion, so
we simply call hardclock/statclock on the boot CPU and call the *_process()
functions on the secondaries. For x86, we call statclock and hardclock as
usual and then call forward_hardclock/statclock in the MD code to send an IPI
to cause the AP's to execute forwared_hardclock/statclock which then call the
*_process() functions.
- forward_signal() and forward_roundrobin() have been reworked to be MI and to
involve less hackery. Now the cpu doing the forward sets any flags, etc. and
sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically
return so that they can execute ast() and don't bother with setting the
astpending or needresched flags themselves. This also removes the loop in
forward_signal() as sched_lock closes the race condition that the loop worked
around.
- need_resched(), resched_wanted() and clear_resched() have been changed to take
a process to act on rather than assuming curproc so that they can be used to
implement forward_roundrobin() as described above.
- Various other SMP variables have been moved to a MI subr_smp.c and a new
header sys/smp.h declares MI SMP variables and API's. The IPI API's from
machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h.
- The globaldata_register() and globaldata_find() functions as well as the
SLIST of globaldata structures has become MI and moved into subr_smp.c.
Also, the globaldata list is only available if SMP support is compiled in.
Reviewed by: jake, peter
Looked over by: eivind
of long and int64_t; and print the result as an unsigned long. This should
make the output from the bzero() test more readable, and avoid printing a
negative bandwidth. Note that this doesn't change the decision process,
since that is based on time elapsed, not on computed bandwidth.
and used in C or vice versa. The elf compiler uses the same names
for both. Remove asnames.h with great prejudice; it has served its
purpose.
Note that this does not affect the ability to generate an aout kernel
due to gcc's -mno-underscores option.
moral support from: peter, jhb
- Don't use an atomic operation to update cnt.v_soft in ast(). This is
the only place the variable is written to, and sched_lock is always
held when it is written, so it is already protected and the mutex release
of sched_lock asserts a memory barrier that ensures the value will be
updated in a timely fashion.
scheduling an interrupt thread to run when needed. This has the side
effect of enabling support for entropy gathering from interrupts on
all architectures.
- Change the software interrupt and x86 and alpha hardware interrupt code
to use ithread_schedule() for most of their processing when scheduling
an interrupt to run.
- Remove the pesky Warning message about interrupt threads having entropy
enabled. I'm not sure why I put that in there in the first place.
- Add more error checking for parameters and change some cases that
returned EINVAL to panic on failure instead via KASSERT().
- Instead of doing a documented evil hack of setting the P_NOLOAD flag
on every interrupt thread whose pri was SWI_CLOCK, set the flag
explicity for clk_ithd's proc during start_softintr().
tsc_present in the right places (together with other variables of the
same linkage), and don't use messy ifdefs just to avoid exporting it in
some cases.
Some things needed bits of <i386/include/lock.h> - cy.c now has its
own (only) copy of the COM_(UN)LOCK() macros, and IMASK_(UN)LOCK()
has been moved to <i386/include/apic.h> (AKA <machine/apic.h>).
Reviewed by: jhb
attributes. This is needed for AST's to be properly posted in a preemptive
kernel. They are backed by two new flags in p_sflag: PS_ASTPENDING and
PS_NEEDRESCHED. They are still accesssed by their old macros:
aston(), astoff(), etc. For completeness, an astpending() macro has been
added to check for a pending AST, and clear_resched() has been added to
clear need_resched().
- Rename syscall2() on the x86 back to syscall() to be consistent with
other architectures.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
- If possible, context switch to the thread directly in sched_ithd(),
rather than triggering a delayed ast reschedule.
- Disable interrupts while restoring fpu state in the trap handler,
in order to ensure that we are not preempted in the middle, which
could cause migration to another cpu.
Reviewed by: peter
Tested by: peter (alpha)
incompletely converting simplelocks to mutexes (COM_LOCK() is supposed
to hide the SMP locking internals, but it now depends on mutex interfaces
being visible).
interrupt threads to run with it always >= 1, so that malloc can
detect M_WAITOK from "interrupt" context. This is also necessary
in order to context switch from sched_ithd() directly.
Reviewed By: peter
initialization until after malloc() is safe to call, then iterate through
all mutexes and complete their initialization.
This change is necessary in order to avoid some circular bootstrapping
dependencies.
All calls to mtx_init() for mutexes that recurse must now include
the MTX_RECURSE bit in the flag argument variable. This change is in
preparation for an upcoming (further) mutex API cleanup.
The witness code will call panic() if a lock is found to recurse but
the MTX_RECURSE bit was not set during the lock's initialization.
The old MTX_RECURSE "state" bit (in mtx_lock) has been renamed to
MTX_RECURSED, which is more appropriate given its meaning.
The following locks have been made "recursive," thus far:
eventhandler, Giant, callout, sched_lock, possibly some others declared
in the architecture-specific code, all of the network card driver locks
in pci/, as well as some other locks in dev/ stuff that I've found to
be recursive.
Reviewed by: jhb
time I tinkered around here. Since INTREN is called from the interrupt
critical path now, it should not be too expensive. In this case, we
look at the bits being changed to decide which 8 bit IO port to write to
rather than unconditionally writing to both. I could probably have gone
further and only done the write if the bits actually changed, but that
seemed overkill for the usual case in interrupt threads.
[an outb is rather expensive when it has to cross the ISA bus]
as multi-processor kernels. The old way made it difficult for kernel
modules to be portable between uni-processor and multi-processor
kernels. It is no longer necessary to jump through hoops.
- always load %fs with the private segment on entry to the kernel
- change the type of the self referntial pointer from struct privatespace
to struct globaldata
- make the globaldata symbol have value 0 in all cases, so the symbols
in globals.s are always offsets, not aliases for fields in globaldata
- define the globaldata space used for uniprocessor kernels in C, rather
than assembler
- change the assmebly language accessors to use %fs, add a macro
PCPU_ADDR(member, reg), which loads the register reg with the address
of the per-cpu variable member
This version is functional and is aproaching solid..
notice I said APROACHING. There are many node types I cannot test
I have tested: echo hole ppp socket vjc iface tee bpf async tty
The rest compile and "Look" right. More changes to follow.
DEBUGGING is enabled in this code to help if people have problems.
format version number. (userland programs should not need to be
recompiled when the netgraph kernel internal ABI is changed.
Also fix modules that don;t handle the fact that a caller may not supply
a return message pointer. (benign at the moment because the calling code
checks, but that will change)
Add detach routine and turn driver into a module so it can be loaded
and unloaded. Also take a stab at implementing multicast packet
reception so that this NIC will work with IPv6. Promiscuous mode
doesn't seem to work, but I'm not sure why. It works well enough that
I can run dhclient on it and put it on the office network though.
Also ripped out spl stuff and replaced it with mutexes.
variables from i386 assembly language. The syntax is PCPU(member)
where member is the capitalized name of the per-cpu variable, without
the gd_ prefix. Example: movl %eax,PCPU(CURPROC). The capitalization
is due to using the offsets generated by genassym rather than the symbols
provided by linking with globals.o. asmacros.h is the wrong place for
this but it seemed as good a place as any for now. The old implementation
in asnames.h has not been removed because it is still used to de-mangle
the symbols used by the C variables for the UP case.
This clears out my outstanding netgraph changes.
There is a netgraph change of design in the offing and this is to some
extent a superset of soem of the new functionality and some of the old
functionality that may be removed.
This code works as before, but allows some new features that I want to
work with and evaluate. It is the basis for a version of netgraph
with integral locking for SMP use.
This is running on my test machine with no new problems :-)
mpapic.c. This gives us the benefit of C type checking. These functions
are not called in any critical paths and are not used by the interrupt
routines.
spending, which was unused now that all software interrupts have
their own thread. Make the legacy schednetisr use an atomic op
for setting bits in the netisr mask.
Reviewed by: jhb
Also, while here, run up to 32 interrupt sources on APIC systems.
Normalize INTREN/INTRDIS so they are the same on both UP and SMP systems
rather than sometimes a macro, and sometimes a function.
Reviewed by: jhb, jakeb
before adding/removing packets from the queue. Also, the if_obytes and
if_omcasts fields should only be manipulated under protection of the mutex.
IF_ENQUEUE, IF_PREPEND, and IF_DEQUEUE perform all necessary locking on
the queue. An IF_LOCK macro is provided, as well as the old (mutex-less)
versions of the macros in the form _IF_ENQUEUE, _IF_QFULL, for code which
needs them, but their use is discouraged.
Two new macros are introduced: IF_DRAIN() to drain a queue, and IF_HANDOFF,
which takes care of locking/enqueue, and also statistics updating/start
if necessary.
<sys/proc.h> to <sys/systm.h>.
Correctly document the #includes needed in the manpage.
Add one now needed #include of <sys/systm.h>.
Remove the consequent 48 unused #includes of <sys/proc.h>.
because it only takes a struct tag which makes it impossible to
use unions, typedefs etc.
Define __offsetof() in <machine/ansi.h>
Define offsetof() in terms of __offsetof() in <stddef.h> and <sys/types.h>
Remove myriad of local offsetof() definitions.
Remove includes of <stddef.h> in kernel code.
NB: Kernelcode should *never* include from /usr/include !
Make <sys/queue.h> include <machine/ansi.h> to avoid polluting the API.
Deprecate <struct.h> with a warning. The warning turns into an error on
01-12-2000 and the file gets removed entirely on 01-01-2001.
Paritials reviews by: various.
Significant brucifications by: bde
- Change the softintr() macro to do nothing on FreeBSD. Previously,
this macro would set a bit in spending and schedule the softinterrupt
thread to run. However, the bs driver never actually registers a
a software interrupt handler, so all this work achieved nothing. From
the code it is not clear what exactly the softintr() macro is actually
supposed to be doing. It looks like it is supposed to be possibly
running the hardware interrupt handler maybe? This handler is only
present in the #ifdef __NetBSD__ code however. I have no idea how this
driver handles interrupts at all, but at least it compiles now.
type of software interrupt. Roughly, what used to be a bit in spending
now maps to a swi thread. Each thread can have multiple handlers, just
like a hardware interrupt thread.
- Instead of using a bitmask of pending interrupts, we schedule the specific
software interrupt thread to run, so spending, NSWI, and the shandlers
array are no longer needed. We can now have an arbitrary number of
software interrupt threads. When you register a software interrupt
thread via sinthand_add(), you get back a struct intrhand that you pass
to sched_swi() when you wish to schedule your swi thread to run.
- Convert the name of 'struct intrec' to 'struct intrhand' as it is a bit
more intuitive. Also, prefix all the members of struct intrhand with
'ih_'.
- Make swi_net() a MI function since there is now no point in it being
MD.
Submitted by: cp
Replace all in-tree uses with <sys/mouse.h> which repo-copied a few
moments ago from src/sys/i386/include/mouse.h by peter.
This is also the appropriate fix for exo-tree sources.
Put warnings in <machine/mouse.h> to discourage use.
November 15th 2000 the warnings will be converted to errors.
January 15th 2001 the <machine/mouse.h> files will be removed.
Replace all in-tree uses with necessary subset of <sys/{fb,kb,cons}io.h>.
This is also the appropriate fix for exo-tree sources.
Put warnings in <machine/console.h> to discourage use.
November 15th 2000 the warnings will be converted to errors.
January 15th 2001 the <machine/console.h> files will be removed.
return through doreti to handle ast's. This is necessary for the
clock interrupts to work properly.
- Change the clock interrupts on the x86 to be fast instead of threaded.
This is needed because both hardclock() and statclock() need to run in
the context of the current process, not in a separate thread context.
- Kill the prevproc hack as it is no longer needed.
- We really need Giant when we call psignal(), but we don't want to block
during the clock interrupt. Instead, use two p_flag's in the proc struct
to mark the current process as having a pending SIGVTALRM or a SIGPROF
and let them be delivered during ast() when hardclock() has finished
running.
- Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was
broken on the x86 if it was turned on since cpl is gone. It's only use
was to bogusly run softclock() directly during hardclock() rather than
scheduling an SWI.
- Remove the COM_LOCK simplelock and replace it with a clock_lock spin
mutex. Since the spin mutex already handles disabling/restoring
interrupts appropriately, this also lets us axe all the *_intr() fu.
- Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use
temporary fast interrupts for the APIC trial.
- Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending
signals in hardclock() that are to be delivered in ast().
Submitted by: jakeb (making statclock safe in a fast interrupt)
Submitted by: cp (concept of delaying signals until ast())
- Make softinterrupts (SWI's) almost completely MI, and divorce them
completely from the x86 hardware interrupt code.
- The ihandlers array is now gone. Instead, there is a MI shandlers array
that just contains SWI handlers.
- Most of the former machine/ipl.h files have moved to a new sys/ipl.h.
- Stub out all the spl*() functions on all architectures.
Submitted by: dfr
drivers (again). These drivers have not compiled for 5-6 months.
Now that the new sound code supports MIDI, the major reason we had for
reviving it is gone. It is a far better investment polishing the new
midi code than trying to keep this on life support. Come 5.0-REL, if
there are major shortcomings in the pcm sound driver then maybe we can
rethink this, but until then we should focus on pcm.
Remember, these have not been compilable since ~April-May this year.
i386/isa/pcibus.c. This gets -current running again on multiple host->pci
machines after the most recent nexus commits. I had discussed this with
Mike Smith, but ended up doing it slightly differently to what we
discussed as it turned out cleaner this way. Mike was suggesting creating
a new resource (SYS_RES_PCIBUS) or something and using *_[gs]et_resource(),
but IMHO that wasn't ideal as SYS_RES_* is meant to be a global platform
property, not a quirk of a given implementation. This does use the ivar
methods but does so properly. It also now prints the physical pci bus that
a host->pci bridge (pcib) corresponds to.
other schedsoft*() functions since they have never been used.
Removed confused comment about not needing these functions. The
functions delay scheduling of SWIs until the next hardclock tick.
For devices that only deliver a few characters per interrupt, this
reduces the number of calls to the scheduler by a large factor (about
115 for each sio port at 115200 bps).
thread for each interrupt that comes in. If we don't, log the event and
return immediately for a hardware interrupt. For a softinterrupt, panic
instead.
Submitted by: ben
The code for suspend/resume is derived from APM device driver.
Some people suggested the original code is somewhat buggy, but I'd
like to just move it from apm.c without any major changes for the
initial version. This code should be refined later.
To use pmtimer to adjust time at resume time, add
device pmtimer
in your kernel config file, and add
hint.pmtimer.0.at="isa"
in your device.hints
Reviewed by: -current, bde
newbus for referencing device interrupt handlers.
- Move the 'struct intrec' type which describes interrupt sources into
sys/interrupt.h instead of making it just be a x86 structure.
- Don't create 'ithd' and 'intrec' typedefs, instead, just use 'struct ithd'
and 'struct intrec'
- Move the code to translate new-bus interrupt flags into an interrupt thread
priority out of the x86 nexus code and into a MI ithread_priority()
function in sys/kern/kern_intr.c.
- Remove now-uneeded x86-specific headers from sys/dev/ata/ata-all.c and
sys/pci/pci_compat.c.
don't take an arg, but swi_generic() is special in order to avoid one
whole conditional branch in the old SWI dispatch code. The new SWI
dispatch code passed it a garbage arg. Bypass swi_generic() and call
swi_dispatcher() directly, like the corresponding alpha code has always
done.
The panic was rare because because it only occurred if more than one
of the {sio,cy,rc} drivers was configured and one was active, and the
cy driver doesn't even compile.
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
Some have dual host->PCI bridges for the same logical pci bus (!), eg:
some of the RCC chipsets. This is a 32/64 bit 33/66MHz and dual pci
voltage motherboard so persumably there are electical or signalling
differences but they are otherwise the same logical bus.
The new PCI probe code however was getting somewhat upset about it and
ended up creating two pci bridges to the same logical bus, which caused
devices on that logical bus to appear and be probed twice.
The ACPI data on this box correctly identifies this stuff, so bring on
ACPI! :-)
pcib_set_bus() cannot be used on the new child because it is
meant to be used on the *pci* device (it looks at the parent internally)
not the pcib being added. Bite the bullet and use ivars for the bus
number to avoid any doubts about whether the softc is consistant between
probe and attach. This should not break the Alpha code.
kernel can instigate an orderly shutdown but still determine the form of
that shutdown. Make it possible eg. to cleanly shutdown and power off the
system under ACPI when the power button is pressed.
the drivers.
* Remove legacy inx/outx support from chipset and replace with macros
which call busspace.
* Rework pci config accesses to route through the pcib device instead of
calling a MD function directly.
With these changes it is possible to cleanly support machines which have
more than one independantly numbered PCI busses. As a bonus, the new
busspace implementation should be measurably faster than the old one.