In the original implementation the zfs_open()/zfs_close() hooks
were dropped for simplicity. This was functional but not 100%
correct with the expected ZFS sematics. Updating and re-adding the
zfs_open()/zfs_close() hooks resolves the following issues.
1) The ZFS_APPENDONLY file attribute is once again honored. While
there are still no Linux tools to set/clear these attributes once
there are it should behave correctly.
2) Minimal virus scan file attribute hooks were added. Once again
this support in disabled but the infrastructure is back in place.
3) Most importantly correctly handle assigning files which were
opened syncronously to the intent log. Without this change O_SYNC
modifications could be lost during a system crash even though they
were marked synchronous.
Filesystems like ZFS must use what the kernel calls an anonymous super
block. Basically, this is just a filesystem which is not backed by a
single block device. Normally this block device's dev_t is stored in
the super block. For anonymous super blocks a unique reserved dev_t
is assigned as part of get_sb().
This sb->s_dev must then be set in the returned stat structures as
stat->st_dev. This allows userspace utilities to easily detect the
boundries of a specific filesystem. Tools such as 'du' depend on this
for proper accounting.
Additionally, under OpenSolaris the statfs->f_fsid is set to the device
id. To preserve consistency with OpenSolaris we also set the fsid to
the device id. Other Linux filesystem (ext) set the fsid to a unique
value determined by the filesystems uuid. This value is unique but
maintains no relationship to the device id. This may be desirable
when exporting NFS filesystem because it minimizes to chance of a
client observing the same fsid from two different servers.
Closes#140
Move 'tmpxvattr' from the stack to the heap to minimize stack
space usage. This is enough to get us below the 1024 byte stack
frame warning. That however is still a large stack frame and it
should be further reduced by moving the 'bulk' and 'xattr_bulk'
sa_bulk_attr_t variables to the heap in a future patch.
When I began work on the Posix layer it immediately became clear to
me that to integrate cleanly with the Linux VFS certain Solaris
specific things would have to go. One of these things was to elimate
as many Solaris specific types from the ZPL layer as possible. They
would be replaced with their Linux equivalents. This would not only
be good for performance, but for the general readability and health of
the code. The Solaris and Linux VFS are different beasts and should
be treated as such. Most of the code remains common for constructing
transactions and such, but there are subtle and important differenced
which need to be repsected.
This policy went quite for for certain types such as the vnode_t,
and it initially seemed to be working out well for the vattr_t. There
was a relatively small amount of related xvattr_t code I was forced to
comment out with HAVE_XVATTR. But it didn't look that hard to come
back soon and replace it all with a native Linux type.
However, after going doing this path with xvattr some distance it
clear that this code was woven in the ZPL more deeply than I thought.
In particular its hooks went very deep in to the ZPL replay code
and replacing it would not be as easy as I originally thought.
Rather than continue persuing replacing and removing this code I've
taken a step back and reevaluted things. This commit reverts many of
my previous commits which removed xvattr related code. It restores
much of the code to its original upstream state and now relies on
improved xvattr_t support in the zfs package itself.
The result of this is that much of the code which I had commented
out, which accidentally broke things like replay, is now back in
place and working. However, there may be a small performance
impact for getattr/setattr operations because they now require
a translation from native Linux to Solaris types. For now that's
a price I'm willing to pay. Once everything is completely functional
we can revisting the issue of removing the vattr_t/xvattr_t types.
Closes#111
ASSERT3P should be used instead of ASSERT3U when comparing
pointers. Using ASSERT3U with the cast causes a compiler
warning for 32-bit builds which is fatal with --enable-debug.
Because the secpolicy_* macros are all currently defined to (0).
And because the caller of this function does not check the return
code. The compiler complains that this statement has no effect
which is correct and OK. To suppress the warning explictly cast
the result to (void).
When changing the uid/gid of a file via zfs_setattr() use the
Posix id passed in iattr->ia_uid/gid. While the zfs_fuid_create()
code already had the fuid support disabled for Linux it was
returning the uid/gid from the credential. With this change
the 'chown' command which relies on setxattr is now working
properly.
Also remove a little stray white space which was in front of
zfs_update_inode() call and the end of zfs_setattr().
Under Linux sys_symlink(2) should result in a inode being created
with one reference for the inode itself, and a second reference on
the inode which is held by the new dentry. Under Solaris this
appears not to be the case. Their zfs_symlink() handler drops
the inode reference before returning.
The result of this under Linux is that the reference count for
symlinks is always one smaller than it should have been. This
results in a BUG() when the symlink is unlinked. To handle this
the Linux port now keeps the inode reference which differs from
the Solaris behavior. This results in correct reference counts.
Closes#96
This patch addresses three issues related to symlinks.
1) Revert the zfs_follow_link() function to a modified version
of the original zfs_readlink(). The only changes from the
original OpenSolaris version relate to using Linux types.
For the moment this means no vnode's and no zfsvfs_t. The
caller zpl_follow_link() was also updated accordingly. This
change was reverted because it was slightly gratuitious.
2) Update zpl_follow_link() to use local variables for the
link buffer. I'd forgotten that iov.iov_base is updated by
uiomove() so after the call to zfs_readlink() it can not longer
be used. We need our own private copy of the link pointer.
3) Allocate MAXPATHLEN instead of MAXPATHLEN+1. By default
MAXPATHLEN is 4096 bytes which is a full page, adding one to
it pushes it slightly over a page. That means you'll likely
end up allocating 2 pages which is wasteful of memory and
possibly slightly slower.
The new prefered inteface for evicting an inode from the inode cache
is the ->evict_inode() callback. It replaces both the ->delete_inode()
and ->clear_inode() callbacks which were previously used for this.
It's worth taking a moment to describe how mmap is implemented
for zfs because it differs considerably from other Linux filesystems.
However, this issue is handled the same way under OpenSolaris.
The issue is that by design zfs bypasses the Linux page cache and
leaves all caching up to the ARC. This has been shown to work
well for the common read(2)/write(2) case. However, mmap(2)
is problem because it relies on being tightly integrated with the
page cache. To handle this we cache mmap'ed files twice, once in
the ARC and a second time in the page cache. The code is careful
to keep both copies synchronized.
When a file with an mmap'ed region is written to using write(2)
both the data in the ARC and existing pages in the page cache
are updated. For a read(2) data will be read first from the page
cache then the ARC if needed. Neither a write(2) or read(2) will
will ever result in new pages being added to the page cache.
New pages are added to the page cache only via .readpage() which
is called when the vfs needs to read a page off disk to back the
virtual memory region. These pages may be modified without
notifying the ARC and will be written out periodically via
.writepage(). This will occur due to either a sync or the usual
page aging behavior. Note because a read(2) of a mmap'ed file
will always check the page cache first even when the ARC is out
of date correct data will still be returned.
While this implementation ensures correct behavior it does have
have some drawbacks. The most obvious of which is that it
increases the required memory footprint when access mmap'ed
files. It also adds additional complexity to the code keeping
both caches synchronized.
Longer term it may be possible to cleanly resolve this wart by
mapping page cache pages directly on to the ARC buffers. The
Linux address space operations are flexible enough to allow
selection of which pages back a particular index. The trick
would be working out the details of which subsystem is in
charge, the ARC, the page cache, or both. It may also prove
helpful to move the ARC buffers to a scatter-gather lists
rather than a vmalloc'ed region.
Additionally, zfs_write/read_common() were used in the readpage
and writepage hooks because it was fairly easy. However, it
would be better to update zfs_fillpage and zfs_putapage to be
Linux friendly and use them instead.
I appologize in advance why to many things ended up in this commit.
When it could be seperated in to a whole series of commits teasing
that all apart now would take considerable time and I'm not sure
there's much merrit in it. As such I'll just summerize the intent
of the changes which are all (or partly) in this commit. Broadly
the intent is to remove as much Solaris specific code as possible
and replace it with native Linux equivilants. More specifically:
1) Replace all instances of zfsvfs_t with zfs_sb_t. While the
type is largely the same calling it private super block data
rather than a zfsvfs is more consistent with how Linux names
this. While non critical it makes the code easier to read when
your thinking in Linux friendly VFS terms.
2) Replace vnode_t with struct inode. The Linux VFS doesn't have
the notion of a vnode and there's absolutely no good reason to
create one. There are in fact several good reasons to remove it.
It just adds overhead on Linux if we were to manage one, it
conplicates the code, and it likely will lead to bugs so there's
a good change it will be out of date. The code has been updated
to remove all need for this type.
3) Replace all vtype_t's with umode types. Along with this shift
all uses of types to mode bits. The Solaris code would pass a
vtype which is redundant with the Linux mode. Just update all the
code to use the Linux mode macros and remove this redundancy.
4) Remove using of vn_* helpers and replace where needed with
inode helpers. The big example here is creating iput_aync to
replace vn_rele_async. Other vn helpers will be addressed as
needed but they should be be emulated. They are a Solaris VFS'ism
and should simply be replaced with Linux equivilants.
5) Update znode alloc/free code. Under Linux it's common to
embed the inode specific data with the inode itself. This removes
the need for an extra memory allocation. In zfs this information
is called a znode and it now embeds the inode with it. Allocators
have been updated accordingly.
6) Minimal integration with the vfs flags for setting up the
super block and handling mount options has been added this
code will need to be refined but functionally it's all there.
This will be the first and last of these to large to review commits.
This code is used for snapshot and heavily leverages Solaris
functionality we do not want to reimplement. These files have
been removed, including references to them, and will be replaced
by a zfs_snap.c/zpl_snap.c implementation which handles snapshots.
For the moment we have left ZFS unchanged and it updates many values
as part of the znode. However, some of these values should be set
in the inode. For the moment this is handled by adding a function
called zfs_inode_update() which updates the inode based on the znode.
This is considered a workaround until we can systematically go
through the ZFS code and have it directly update the inode. At
which point zfs_update_inode() can be dropped entirely. Keeping
two copies of the same data isn't only inefficient it's a breeding
ground for bugs.
These compiler warnings were introduced when code which was
previously #ifdef'ed out by HAVE_ZPL was re-added for use
by the posix layer. All of the following changes should be
obviously correct and will cause no semantic changes.