rather than in ifindex_table[]; all (except one) accesses are
through ifp anyway. IF_LLADDR() works faster, and all (except
one) ifaddr_byindex() users were converted to use ifp->if_addr.
- Stop storing a (pointer to) Ethernet address in "struct arpcom",
and drop the IFP2ENADDR() macro; all users have been converted
to use IF_LLADDR() instead.
Intel's web site requires some minor tweaks to get it to work:
- The driver seems to have been released with full WMI tracing enabled,
and makes references to some WMI APIs, namely IoWMIRegistrationControl(),
WmiQueryTraceInformation() and WmiTraceMessage(). Only the first
one is ever called (during intialization). These have been implemented
as do-nothing stubs for now. Also added a definition for STATUS_NOT_FOUND
to ntoskrnl_var.h, which is used as a return code for one of the WMI
routines.
- The driver references KeRaiseIrqlToDpcLevel() and KeLowerIrql()
(the latter as a function, which is unusual because normally
KeLowerIrql() is a macro in the Windows DDK that calls KfLowewIrql()).
I'm not sure why these are being called since they're not really
part of WDM. Presumeably they're being used for backwards
compatibility with old versions of Windows. These have been
implemented in subr_hal.c. (Note that they're _stdcall routines
instead of _fastcall.)
- When querying the OID_802_11_BSSID_LIST OID to get a BSSID list,
you don't know ahead of time how many networks the NIC has found
during scanning, so you're allowed to pass 0 as the list length.
This should cause the driver to return an 'insufficient resources'
error and set the length to indicate how many bytes are actually
needed. However for some reason, the Intel driver does not honor
this convention: if you give it a length of 0, it returns some
other error and doesn't tell you how much space is really needed.
To get around this, if using a length of 0 yields anything besides
the expected error case, we arbitrarily assume a length of 64K.
This is similar to the hack that wpa_supplicant uses when doing
a BSSID list query.
for code to start out on one CPU when thunking into Windows
mode in ctxsw_utow(), and then be pre-empted and migrated to another
CPU before thunking back to UNIX mode in ctxsw_wtou(). This is
bad, because then we can end up looking at the wrong 'thread environment
block' when trying to come back to UNIX mode. To avoid this, we now
pin ourselves to the current CPU when thunking into Windows code.
Few other cleanups, since I'm here:
- Get rid of the ndis_isr(), ndis_enable_interrupt() and
ndis_disable_interrupt() wrappers from kern_ndis.c and just invoke
the miniport's methods directly in the interrupt handling routines
in subr_ndis.c. We may as well lose the function call overhead,
since we don't need to export these things outside of ndis.ko
now anyway.
- Remove call to ndis_enable_interrupt() from ndis_init() in if_ndis.c.
We don't need to do it there anyway (the miniport init routine handles
it, if needed).
- Fix the logic in NdisWriteErrorLogEntry() a little.
- Change some NDIS_STATUS_xxx codes in subr_ntoskrnl.c into STATUS_xxx
codes.
- Handle kthread_create() failure correctly in PsCreateSystemThread().
Having an additional MT_HEADER mbuf type is superfluous and redundant
as nothing depends on it. It only adds a layer of confusion. The
distinction between header mbuf's and data mbuf's is solely done
through the m->m_flags M_PKTHDR flag.
Non-native code is not changed in this commit. For compatibility
MT_HEADER is mapped to MT_DATA.
Sponsored by: TCP/IP Optimization Fundraise 2005
the start of the section headers has to take into account the fact
that the image_nt_header is really variable sized. It happens that
the existing calculation is correct for _most_ production binaries
produced by the Windows DDK, but if we get a binary with oddball
offsets, the PE loader could crash.
Changes from the supplied patch are:
- We don't really need to use the IMAGE_SIZEOF_NT_HEADER() macro when
computing how much of the header to return to callers of
pe_get_optional_header(). While it's important to take the variable
size of the header into account in other calculations, we never
actually look at anything outside the non-variable portion of the
header. This saves callers from having to allocate a variable sized
buffer off the heap (I purposely tried to avoid using malloc()
in subr_pe.c to make it easier to compile in both the -D_KERNEL and
!-D_KERNEL case), and since we're copying into a buffer on the
stack, we always have to copy the same amount of data or else
we'll trash the stack something fierce.
- We need <stddef.h> to get offsetof() in the !-D_KERNEL case.
- ndiscvt.c needs the IMAGE_FIRST_SECTION() macro too, since it does
a little bit of section pre-processing.
PR: kern/83477
and ndis_halt_nic(). It's been disabled for some time anyway, and
it turns out there's a possible deadlock in NdisMInitializeTimer() when
acquiring the miniport block lock to modify the timer list: it's
possible for a driver to call NdisMInitializeTimer() when the miniport
block lock has already been acquired by an earlier piece of code. You
can't acquire the same spinlock twice, so this can deadlock.
Also, implement MmMapIoSpace() and MmUnmapIoSpace(), and make
NdisMMapIoSpace() and NdisMUnmapIoSpace() use them. There are some
drivers that want MmMapIoSpace() and MmUnmapIoSpace() so that they can
map arbitrary register spaces not directly associated with their
device resources. For example, there's an Atheros driver for
a miniPci card (0x168C:0x1014) on the IBM Thinkpad x40 that wants
to map some I/O spaces at 0xF00000 and 0xE00000 which are held by
the acpi0 device. I don't know what it wants these ranges for,
but if it can't map and access them, the MiniportInitialize() method
fails.
This avoids the need for sched_bind() in the default case so that you
can start up the NDIS subsystem at boot time when only CPU 0 is running.
There are potentially ways to fix it so that the DPC threads aren't
started until after the other CPUs are launched, but doing it correctly
is tricky. You need to defer the startup of the ntoskrnl subsystem
(ntoskrnl_libinit()), not just defer ndis_attach().
For now, I don't think it will make much difference having just the
single DPC thread (I started out with just one anyway). Note that this
turns the KeSetTargetProcessorDpc() routine into a no-op, since the
CPU number in struct kdpc is now ignored.
is KeRaiseIrql(newirql, &oldirql), not oldirql = KeRaiseIrql(newirql).
(The macro ultimately translates to KfRaiseIrql() which does use
the latter API, so this has no effect on generated code.)
Also, wait for thread termination the right way: kthread_exit()
will ultimately do a wakeup(td->td_proc). This is the event we
should wait on. Eliminate the previous synchronization machinery
for this since it was never guaranteed to work correctly.
processor, to insure DPC thread 0 runs on CPU0, DPC thread 1 runs on
CPU1, and so on.
Elevate the priority of the workitem threads, though don't use as
high a priority as the DPC threads.
- Change ndis_return() from a DPC to a workitem so that it doesn't
run at DISPATCH_LEVEL (with the dispatcher lock held).
- In if_ndis.c, submit packets to the stack via (*ifp->if_input)() in
a workitem instead of doing it directly in ndis_rxeof(), because
ndis_rxeof() runs in a DPC, and hence at DISPATCH_LEVEL. This
implies that the 'dispatch level' mutex for the current CPU is
being held, and we don't want to call if_input while holding
any locks.
- Reimplement IoConnectInterrupt()/IoDisconnectInterrupt(). The original
approach I used to track down the interrupt resource (by scanning
the device tree starting at the nexus) is prone to problems when
two devices share an interrupt. (E.g removing ndis1 might disable
interrupts for ndis0.) The new approach is to multiplex all the
NDIS interrupts through a common internal dispatcher (ntoskrnl_intr())
and allow IoConnectInterrupt()/IoDisconnectInterrupt() to add or
remove interrupts from the dispatch list.
- Implement KeAcquireInterruptSpinLock() and KeReleaseInterruptSpinLock().
- Change the DPC and workitem threads to use the KeXXXSpinLock
API instead of mtx_lock_spin()/mtx_unlock_spin().
- Simplify the NdisXXXPacket routines by creating an actual
packet pool structure and using the InterlockedSList routines
to manage the packet queue.
- Only honor the value returned by OID_GEN_MAXIMUM_SEND_PACKETS
for serialized drivers. For deserialized drivers, we now create
a packet array of 64 entries. (The Microsoft DDK documentation
says that for deserialized miniports, OID_GEN_MAXIMUM_SEND_PACKETS
is ignored, and the driver for the Marvell 8335 chip, which is
a deserialized miniport, returns 1 when queried.)
- Clean up timer handling in subr_ntoskrnl.
- Add the following conditional debugging code:
NTOSKRNL_DEBUG_TIMERS - add debugging and stats for timers
NDIS_DEBUG_PACKETS - add extra sanity checking for NdisXXXPacket API
NTOSKRNL_DEBUG_SPINLOCKS - add test for spinning too long
- In kern_ndis.c, always start the HAL first and shut it down last,
since Windows spinlocks depend on it. Ntoskrnl should similarly be
started second and shut down next to last.
changes in MD code are trivial, before this change, trapsignal and
sendsig use discrete parameters, now they uses member fields of
ksiginfo_t structure. For sendsig, this change allows us to pass
POSIX realtime signal value to user code.
2. Remove cpu_thread_siginfo, it is no longer needed because we now always
generate ksiginfo_t data and feed it to libpthread.
3. Add p_sigqueue to proc structure to hold shared signals which were
blocked by all threads in the proc.
4. Add td_sigqueue to thread structure to hold all signals delivered to
thread.
5. i386 and amd64 now return POSIX standard si_code, other arches will
be fixed.
6. In this sigqueue implementation, pending signal set is kept as before,
an extra siginfo list holds additional siginfo_t data for signals.
kernel code uses psignal() still behavior as before, it won't be failed
even under memory pressure, only exception is when deleting a signal,
we should call sigqueue_delete to remove signal from sigqueue but
not SIGDELSET. Current there is no kernel code will deliver a signal
with additional data, so kernel should be as stable as before,
a ksiginfo can carry more information, for example, allow signal to
be delivered but throw away siginfo data if memory is not enough.
SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can
not be caught or masked.
The sigqueue() syscall allows user code to queue a signal to target
process, if resource is unavailable, EAGAIN will be returned as
specification said.
Just before thread exits, signal queue memory will be freed by
sigqueue_flush.
Current, all signals are allowed to be queued, not only realtime signals.
Earlier patch reviewed by: jhb, deischen
Tested on: i386, amd64
First and most importantly, I threw out the thread priority-twiddling
implementation of KeRaiseIrql()/KeLowerIrq()/KeGetCurrentIrql() in
favor of a new scheme that uses sleep mutexes. The old scheme was
really very naughty and sought to provide the same behavior as
Windows spinlocks (i.e. blocking pre-emption) but in a way that
wouldn't raise the ire of WITNESS. The new scheme represents
'DISPATCH_LEVEL' as the acquisition of a per-cpu sleep mutex. If
a thread on cpu0 acquires the 'dispatcher mutex,' it will block
any other thread on the same processor that tries to acquire it,
in effect only allowing one thread on the processor to be at
'DISPATCH_LEVEL' at any given time. It can then do the 'atomic sit
and spin' routine on the spinlock variable itself. If a thread on
cpu1 wants to acquire the same spinlock, it acquires the 'dispatcher
mutex' for cpu1 and then it too does an atomic sit and spin to try
acquiring the spinlock.
Unlike real spinlocks, this does not disable pre-emption of all
threads on the CPU, but it does put any threads involved with
the NDISulator to sleep, which is just as good for our purposes.
This means I can now play nice with WITNESS, and I can safely do
things like call malloc() when I'm at 'DISPATCH_LEVEL,' which
you're allowed to do in Windows.
Next, I completely re-wrote most of the event/timer/mutex handling
and wait code. KeWaitForSingleObject() and KeWaitForMultipleObjects()
have been re-written to use condition variables instead of msleep().
This allows us to use the Windows convention whereby thread A can
tell thread B "wake up with a boosted priority." (With msleep(), you
instead have thread B saying "when I get woken up, I'll use this
priority here," and thread A can't tell it to do otherwise.) The
new KeWaitForMultipleObjects() has been better tested and better
duplicates the semantics of its Windows counterpart.
I also overhauled the IoQueueWorkItem() API and underlying code.
Like KeInsertQueueDpc(), IoQueueWorkItem() must insure that the
same work item isn't put on the queue twice. ExQueueWorkItem(),
which in my implementation is built on top of IoQueueWorkItem(),
was also modified to perform a similar test.
I renamed the doubly-linked list macros to give them the same names
as their Windows counterparts and fixed RemoveListTail() and
RemoveListHead() so they properly return the removed item.
I also corrected the list handling code in ntoskrnl_dpc_thread()
and ntoskrnl_workitem_thread(). I realized that the original logic
did not correctly handle the case where a DPC callout tries to
queue up another DPC. It works correctly now.
I implemented IoConnectInterrupt() and IoDisconnectInterrupt() and
modified NdisMRegisterInterrupt() and NdisMDisconnectInterrupt() to
use them. I also tried to duplicate the interrupt handling scheme
used in Windows. The interrupt handling is now internal to ndis.ko,
and the ndis_intr() function has been removed from if_ndis.c. (In
the USB case, interrupt handling isn't needed in if_ndis.c anyway.)
NdisMSleep() has been rewritten to use a KeWaitForSingleObject()
and a KeTimer, which is how it works in Windows. (This is mainly
to insure that the NDISulator uses the KeTimer API so I can spot
any problems with it that may arise.)
KeCancelTimer() has been changed so that it only cancels timers, and
does not attempt to cancel a DPC if the timer managed to fire and
queue one up before KeCancelTimer() was called. The Windows DDK
documentation seems to imply that KeCantelTimer() will also call
KeRemoveQueueDpc() if necessary, but it really doesn't.
The KeTimer implementation has been rewritten to use the callout API
directly instead of timeout()/untimeout(). I still cheat a little in
that I have to manage my own small callout timer wheel, but the timer
code works more smoothly now. I discovered a race condition using
timeout()/untimeout() with periodic timers where untimeout() fails
to actually cancel a timer. I don't quite understand where the race
is, using callout_init()/callout_reset()/callout_stop() directly
seems to fix it.
I also discovered and fixed a bug in winx32_wrap.S related to
translating _stdcall calls. There are a couple of routines
(i.e. the 64-bit arithmetic intrinsics in subr_ntoskrnl) that
return 64-bit quantities. On the x86 arch, 64-bit values are
returned in the %eax and %edx registers. However, it happens
that the ctxsw_utow() routine uses %edx as a scratch register,
and x86_stdcall_wrap() and x86_stdcall_call() were only preserving
%eax before branching to ctxsw_utow(). This means %edx was getting
clobbered in some cases. Curiously, the most noticeable effect of this
bug is that the driver for the TI AXC110 chipset would constantly drop
and reacquire its link for no apparent reason. Both %eax and %edx
are preserved on the stack now. The _fastcall and _regparm
wrappers already handled everything correctly.
I changed if_ndis to use IoAllocateWorkItem() and IoQueueWorkItem()
instead of the NdisScheduleWorkItem() API. This is to avoid possible
deadlocks with any drivers that use NdisScheduleWorkItem() themselves.
The unicode/ansi conversion handling code has been cleaned up. The
internal routines have been moved to subr_ntoskrnl and the
RtlXXX routines have been exported so that subr_ndis can call them.
This removes the incestuous relationship between the two modules
regarding this code and fixes the implementation so that it honors
the 'maxlen' fields correctly. (Previously it was possible for
NdisUnicodeStringToAnsiString() to possibly clobber memory it didn't
own, which was causing many mysterious crashes in the Marvell 8335
driver.)
The registry handling code (NdisOpen/Close/ReadConfiguration()) has
been fixed to allocate memory for all the parameters it hands out to
callers and delete whem when NdisCloseConfiguration() is called.
(Previously, it would secretly use a single static buffer.)
I also substantially updated if_ndis so that the source can now be
built on FreeBSD 7, 6 and 5 without any changes. On FreeBSD 5, only
WEP support is enabled. On FreeBSD 6 and 7, WPA-PSK support is enabled.
The original WPA code has been updated to fit in more cleanly with
the net80211 API, and to eleminate the use of magic numbers. The
ndis_80211_setstate() routine now sets a default authmode of OPEN
and initializes the RTS threshold and fragmentation threshold.
The WPA routines were changed so that the authentication mode is
always set first, followed by the cipher. Some drivers depend on
the operations being performed in this order.
I also added passthrough ioctls that allow application code to
directly call the MiniportSetInformation()/MiniportQueryInformation()
methods via ndis_set_info() and ndis_get_info(). The ndis_linksts()
routine also caches the last 4 events signalled by the driver via
NdisMIndicateStatus(), and they can be queried by an application via
a separate ioctl. This is done to allow wpa_supplicant to directly
program the various crypto and key management options in the driver,
allowing things like WPA2 support to work.
Whew.
osf1_signal.c:1.41, amd64/amd64/trap.c:1.291, linux_socket.c:1.60,
svr4_fcntl.c:1.36, svr4_ioctl.c:1.23, svr4_ipc.c:1.18, svr4_misc.c:1.81,
svr4_signal.c:1.34, svr4_stat.c:1.21, svr4_stream.c:1.55,
svr4_termios.c:1.13, svr4_ttold.c:1.15, svr4_util.h:1.10,
ext2_alloc.c:1.43, i386/i386/trap.c:1.279, vm86.c:1.58,
unaligned.c:1.12, imgact_elf.c:1.164, ffs_alloc.c:1.133:
Now that Giant is acquired in uprintf() and tprintf(), the caller no
longer leads to acquire Giant unless it also holds another mutex that
would generate a lock order reversal when calling into these functions.
Specifically not backed out is the acquisition of Giant in nfs_socket.c
and rpcclnt.c, where local mutexes are held and would otherwise violate
the lock order with Giant.
This aligns this code more with the eventual locking of ttys.
Suggested by: bde
as they both interact with the tty code (!MPSAFE) and may sleep if the
tty buffer is full (per comment).
Modify all consumers of uprintf() and tprintf() to hold Giant around
calls into these functions. In most cases, this means adding an
acquisition of Giant immediately around the function. In some cases
(nfs_timer()), it means acquiring Giant higher up in the callout.
With these changes, UFS no longer panics on SMP when either blocks are
exhausted or inodes are exhausted under load due to races in the tty
code when running without Giant.
NB: Some reduction in calls to uprintf() in the svr4 code is probably
desirable.
NB: In the case of nfs_timer(), calling uprintf() while holding a mutex,
or even in a callout at all, is a bad idea, and will generate warnings
and potential upset. This needs to be fixed, but was a problem before
this change.
NB: uprintf()/tprintf() sleeping is generally a bad ideas, as is having
non-MPSAFE tty code.
MFC after: 1 week
so that we do not call uiomove() while IFNET_RLOCK() is held.
This eliminates the witness warning:
Calling uiomove() with the following non-sleepable locks held:
exclusive sleep mutex ifnet r = 0 (0xc096dd60) locked @
/usr/src/sys/modules/linux/../../compat/linux/linux_ioctl.c:2170
MFC after: 2 days
IFF_DRV_RUNNING, as well as the move from ifnet.if_flags to
ifnet.if_drv_flags. Device drivers are now responsible for
synchronizing access to these flags, as they are in if_drv_flags. This
helps prevent races between the network stack and device driver in
maintaining the interface flags field.
Many __FreeBSD__ and __FreeBSD_version checks maintained and continued;
some less so.
Reviewed by: pjd, bz
MFC after: 7 days