when the user has indicated that the system has synchronized TSCs or it has
P-state invariant TSCs. For the former case, we may clear the tunable if it
fails the test to prevent accidental foot-shooting. For the latter case, we
may set it if it passes the test to notify the user that it may be usable.
versions instead. They were never needed as bus_generic_intr() and
bus_teardown_intr() had been changed to pass the original child device up
in 42734, but the ISA bus was not converted to new-bus until 45720.
safer for i386 because it can be easily over 4 GHz now. More worse, it can
be easily changed by user with 'machdep.tsc_freq' tunable (directly) or
cpufreq(4) (indirectly). Note it is intentionally not used in performance
critical paths to avoid performance regression (but we should, in theory).
Alternatively, we may add "virtual TSC" with lower frequency if maximum
frequency overflows 32 bits (and ignore possible incoherency as we do now).
- Avoid side-effect assignments in if statements when possible.
- Don't use ! to check for NULL pointers, explicitly check against NULL.
- Explicitly check error return values against 0.
- Don't use INTR_MPSAFE for interrupt handlers with only filters as it is
meaningless.
- Remove unneeded function casts.
Old scrolls tell that once upon a time IBM AT BIOS was known to put some
useful system diagnostic information into RTC NVRAM. It is not really
known if and for how long PC BIOSes followed that convention, but I
believe that many, if not all, modern BIOSes do not do that any more
(not mentioning other types of x86 firmware).
Some diagnostic bits don't even make any sense any longer.
The check results in confusing messages upon boot on some systems.
So I am removing it.
Discussed with: bde, jhb, mav
MFC after: 3 weeks
not neccessary. It allows to avoid time counter jump of up to 1/18s, when
base frequency slightly tuned via machdep.i8254_freq sysctl.
Fix few style things.
Suggested by: bde
Unluckily, using one-shot mode is impossible, when same hardware used for
time counting. Introduce new tunable hint.attimer.0.timecounter, setting
which to 0 disables i8254 time counter and allows one-shot mode. Note,
that on some systems there may be no other reliable enough time counters,
so this tunable should be used with understanding.
lengths. Make MI wrapper code to validate periods in request. Make kernel
clock management code to honor these hardware limitations while choosing hz,
stathz and profhz values.
HPET to steal IRQ0 from i8254 and IRQ8 from RTC timers. It can be suitable
for HPETs without FSB interrupts support, as it gives them two unshared
IRQs. It allows them to provide one per-CPU event timer on dual-CPU system,
that should be suitable for further tickless kernels.
To enable it, such lines may be added to /boot/loader.conf:
hint.atrtc.0.clock=0
hint.attimer.0.clock=0
hint.hpet.0.legacy_route=1
writing event timer drivers, for choosing best possible drivers by machine
independent code and for operating them to supply kernel with hardclock(),
statclock() and profclock() events in unified fashion on various hardware.
Infrastructure provides support for both per-CPU (independent for every CPU
core) and global timers in periodic and one-shot modes. MI management code
at this moment uses only periodic mode, but one-shot mode use planned for
later, as part of tickless kernel project.
For this moment infrastructure used on i386 and amd64 architectures. Other
archs are welcome to follow, while their current operation should not be
affected.
This patch updates existing drivers (i8254, RTC and LAPIC) for the new
order, and adds event timers support into the HPET driver. These drivers
have different capabilities:
LAPIC - per-CPU timer, supports periodic and one-shot operation, may
freeze in C3 state, calibrated on first use, so may be not exactly precise.
HPET - depending on hardware can work as per-CPU or global, supports
periodic and one-shot operation, usually provides several event timers.
i8254 - global, limited to periodic mode, because same hardware used also
as time counter.
RTC - global, supports only periodic mode, set of frequencies in Hz
limited by powers of 2.
Depending on hardware capabilities, drivers preferred in following orders,
either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC.
User may explicitly specify wanted timers via loader tunables or sysctls:
kern.eventtimer.timer1 and kern.eventtimer.timer2.
If requested driver is unavailable or unoperational, system will try to
replace it. If no more timers available or "NONE" specified for second,
system will operate using only one timer, multiplying it's frequency by few
times and uing respective dividers to honor hz, stathz and profhz values,
set during initial setup.
arbitrary frequencies into hardclock(), statclock() and profclock() calls.
Same code with minor variations duplicated several times over the tree for
different timer drivers and architectures.
- Switch all x86 archs to new functions, simplifying the code and removing
extra logic from timer drivers. Other archs are also welcome.
broken atrtc.
Now if you want more correct stats on profhz and stathz it may be
disabled by setting to 0.
Reported by: A. Akephalos <akephalos dot akephalos at gmail dot com>,
Jakub Lach <jakub_lach at mailplus dot pl>
MFC: 1 week
correctly initialized and just then assign to softclock/profclock.
Right now, some atrtc seems reporting strange diagnostic error* making the
current pattern bogus.
In order to do that cleanly, lapic_setup_clock(), on both ia32 and amd64,
now accepts as arguments the desired sources to handle, and returns the
actual ones (LAPIC_CLOCK_NONE is forbidden because otherwise there is no
meaning in calling such function).
This allows to bring out into commont x86 code the handling part for
machdep.lapic_allclocks tunable, which is retained.
Sponsored by: Sandvine Incorporated
Tested by: yongari, Richard Todd
<rmtodd at ichotolot dot servalan dot com>
MFC: 3 weeks
X-MFC: r202387, 204309
shared and generalized between our current amd64, i386 and pc98.
This is just an initial step that should lead to a more complete effort.
For the moment, a very simple porting of cpufreq modules, BIOS calls and
the whole MD specific ISA bus part is added to the sub-tree but ideally
a lot of code might be added and more shared support should grow.
Sponsored by: Sandvine Incorporated
Reviewed by: emaste, kib, jhb, imp
Discussed on: arch
MFC: 3 weeks