Just cleanup the new fs created during the test, so the "$found"
should be "true".
Signed-off-by: ChaoyuZhang <zhang.chaoyu@zte.com.cn>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4978
From the man page of dirname: " Both dirname() and basename()
may modify the contents of path, so it may be desirable to pass
a copy when calling one of these functions." And in fact on linux
using dirname actually changes the contents of the passed parameter as
evident from the following failure when running the ctime test:
link(/root/zfs-mount, /root/zfs-mount/link_file)
Fix this by creating a copy of the input parameter and passing that
to dirname, thus not compromising the original parameter, allowing
the creation of hard link to succeed.
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4977
Updated test case history_001_pos.ksh so it can run in tree. The
original test case assumed /usr/sbin/zfs and /usr/sbin/zpool were
the only valid locations for these utilities. The same modification
has already been made too history_common.kshlib.
The only other failing test case was history_010_pos and that was
the result of the ":linux" suffix not being appended when checking
the long output in the test case.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4882
Creating the pool in a striped rather than mirrored configuration
provides enough space for all upgrade tests to run. Test case
zpool_upgrade_007_pos still fails and must be investigated so
it has been left disabled.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4852
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Calling dsl_dataset_name on a dataset with a 256 byte buffer is asking
for trouble. We should check every dataset on import, using a 1024 byte
buffer and checking each time to see if the dataset's new name is longer
than 256 bytes.
OpenZFS-issue: https://www.illumos.org/issues/6876
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ca8674e
Authored by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Toomas Soome <tsoome@me.com>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/6562
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/5f7a8e6
2605 want to resume interrupted zfs send
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed by: Xin Li <delphij@freebsd.org>
Reviewed by: Arne Jansen <sensille@gmx.net>
Approved by: Dan McDonald <danmcd@omniti.com>
Ported-by: kernelOfTruth <kerneloftruth@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/2605
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/9c3fd12
6980 6902 causes zfs send to break due to 32-bit/64-bit struct mismatch
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/6980
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ea4a67f
Porting notes:
- All rsend and snapshop tests enabled and updated for Linux.
- Fix misuse of input argument in traverse_visitbp().
- Fix ISO C90 warnings and errors.
- Fix gcc 'missing braces around initializer' in
'struct send_thread_arg to_arg =' warning.
- Replace 4 argument fletcher_4_native() with 3 argument version,
this change was made in OpenZFS 4185 which has not been ported.
- Part of the sections for 'zfs receive' and 'zfs send' was
rewritten and reordered to approximate upstream.
- Fix mktree xattr creation, 'user.' prefix required.
- Minor fixes to newly enabled test cases
- Long holds for volumes allowed during receive for minor registration.
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3542
- Use a fixed buffer of random bytes when random xattr values are in
effect. This eliminates the potential performance bottleneck of
reading from /dev/urandom for each file. This also allows us to
verify xattrs in random value mode.
- Show the rate of operations per second in addition to elapsed time
for each phase of the test. This may be useful for benchmarking.
- Set default xattr size to 6 so that verify doesn't fail if user
doesn't specify a size. We need at least six bytes to store the
leading "size=X" string that is used for verification.
- Allow user to execute just one phase of the test. Acceptable
values for -o and their meanings are:
1 - run the create phase
2 - run the setxattr phase
3 - run the getxattr phase
4 - run the unlink phase
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4328
ZFS allows for specific permissions to be delegated to normal users
with the `zfs allow` and `zfs unallow` commands. In addition, non-
privileged users should be able to run all of the following commands:
* zpool [list | iostat | status | get]
* zfs [list | get]
Historically this functionality was not available on Linux. In order
to add it the secpolicy_* functions needed to be implemented and mapped
to the equivalent Linux capability. Only then could the permissions on
the `/dev/zfs` be relaxed and the internal ZFS permission checks used.
Even with this change some limitations remain. Under Linux only the
root user is allowed to modify the namespace (unless it's a private
namespace). This means the mount, mountpoint, canmount, unmount,
and remount delegations cannot be supported with the existing code. It
may be possible to add this functionality in the future.
This functionality was validated with the cli_user and delegation test
cases from the ZFS Test Suite. These tests exhaustively verify each
of the supported permissions which can be delegated and ensures only
an authorized user can perform it.
Two minor bug fixes were required for test-running.py. First, the
Timer() object cannot be safely created in a `try:` block when there
is an unconditional `finally` block which references it. Second,
when running as a normal user also check for scripts using the
both the .ksh and .sh suffixes.
Finally, existing users who are simulating delegations by setting
group permissions on the /dev/zfs device should revert that
customization when updating to a version with this change.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#362Closes#434Closes#4100Closes#4394Closes#4410Closes#4487
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Dan McDonald <danmcd@omniti.com>
Ported by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/6531
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/97e8130
Porting notes:
- Added new IO delay tracepoints, and moved common ZIO tracepoint macros
to a new trace_common.h file.
- Used zio_delay_taskq() in place of OpenZFS's timeout_generic() function.
- Updated zinject man page
- Updated zpool_scrub test files
This is a purely cosmetical change, to consistently prefer one of
two (both acceptable) choises for the word parsable in documentation and
code. I don't really care which to use, but acording to wiktionary
https://en.wiktionary.org/wiki/parsable#English parsable is preferred.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4682
Commit e0ab3ab introduced new per-vdev ZAP tests which should have
used the $ZPOOL and $ZDB variabled. The tests passed the automated
testing since both utilities but when running in-tree all of the new
tests fail.
Signed-off-by: Don Brady <don.brady@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4515
6736 ZFS per-vdev ZAPs
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Don Brady <don.brady@intel.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/6736https://github.com/openzfs/openzfs/commit/215198a
Ported-by: Don Brady <don.brady@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4515
Call block_device_wait when creating/destroying volumes in order
to make the operations synchronous as expected by the test cases.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4560
Commit 4967a3e introduced a typo that caused the ZPL to store the
intended default ACL as an access ACL. Due to caching this problem
may not become visible until the filesystem is remounted or the inode
is evicted from the cache. Fix the typo and add a regression test.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Closes#4520
In replacement test, it spawns a process to truncate a file background
and make sure that the process exists 1 second later. However, the
process may have finished its work and exited therefore it has the
chance to report a false alarm.
This patch just removed those sanity check.
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4516
When ZFS is installed by 'make install', programs will be installed
into '/usr/local'. ZFS test scripts can't locate programs 'zpool'
that caused tests failure.
Fix typo in help message.
Add sanity check to for ksh and generate a useful error message.
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4495
Add atime_003_pos to test relatime=on, we do check_atime_updated twice, the
first time should success and the second time should fail. We also modify
atime_001_pos to do check_atime_updated twice and both times should succeed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4482
Accidentally introduced by commit 39fc0cb. The devname2devid utility
which depends on libudev must only be built when libudev headers are
available. This is accomplished through an AM_CONDITIONAL.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4416
This is foundational work for ZED.
Updates a leaf vdev's persistent device strings on Linux platform
* only applies for a dedicated leaf vdev (aka whole disk)
* updated during pool create|add|attach|import
* used for matching device matching during auto-{online,expand,replace}
* stored in a leaf disk config label (i.e. alongside 'path' NVP)
* can opt-out using env var ZFS_VDEV_DEVID_OPT_OUT=YES
Some examples:
path: '/dev/sdb1'
devid: 'scsi-350000394a8ca4fbc-part1'
phys_path: 'pci-0000:04:00.0-sas-0x50000394a8ca4fbf-lun-0'
path: '/dev/mapper/mpatha'
devid: 'dm-uuid-mpath-35000c5006304de3f'
Signed-off-by: Don Brady <don.brady@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2856Closes#3978Closes#4416
Results in failures with ksh version 93v- 2014-06-25. This appears
to not be an issue with ksh version 93u+ 2012-08-01. The expanded
versions works correctly for both.
Signed-off-by: Andriy Gapon <andriy.gapon@clusterhq.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4452
The zpool_scrub_002, zpool_scrub_003, zpool_scrub_004 test cases fail
reliably when running against small pools or fast storage. This
occurs because the scrub/resilver operation completes before subsequent
commands can be run.
A one second delay has been added to 10% of zio's in order to ensure
the scrub/resilver operation will run for at least several seconds.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4450
Occasionally zfs_copies_* tests which rely on do_vol_test() will fail
because udev hasn't yet created the minor device. Wait for it.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This issue was caused by calling `thread_init()` and `thread_fini()`
multiple times resulting in `kthread_key` being invalid. To resolve
the issue the explicit calls to `thread_init()` and `thread_fini()`
required by the `zpool` command have been moved in to the command.
Consumers such as `zdb` and `zhack` perform the same initialized
through `kernel_init()` and `kernel_fini()`.
Resolving this issue allows multiple additional test cases to
be enabled.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#4331
This test case add a zvol to as a vdev to an existing pool. This
use case is currently known to be racy.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Add the ZFS Test Suite and test-runner framework from illumos.
This is a continuation of the work done by Turbo Fredriksson to
port the ZFS Test Suite to Linux. While this work was originally
conceived as a stand alone project integrating it directly with
the ZoL source tree has several advantages:
* Allows the ZFS Test Suite to be packaged in zfs-test package.
* Facilitates easy integration with the CI testing.
* Users can locally run the ZFS Test Suite to validate ZFS.
This testing should ONLY be done on a dedicated test system
because the ZFS Test Suite in its current form is destructive.
* Allows the ZFS Test Suite to be run directly in the ZoL source
tree enabled developers to iterate quickly during development.
* Developers can easily add/modify tests in the framework as
features are added or functionality is changed. The tests
will then always be in sync with the implementation.
Full documentation for how to run the ZFS Test Suite is available
in the tests/README.md file.
Warning: This test suite is designed to be run on a dedicated test
system. It will make modifications to the system including, but
not limited to, the following.
* Adding new users
* Adding new groups
* Modifying the following /proc files:
* /proc/sys/kernel/core_pattern
* /proc/sys/kernel/core_uses_pid
* Creating directories under /
Notes:
* Not all of the test cases are expected to pass and by default
these test cases are disabled. The failures are primarily due
to assumption made for illumos which are invalid under Linux.
* When updating these test cases it should be done in as generic
a way as possible so the patch can be submitted back upstream.
Most existing library functions have been updated to be Linux
aware, and the following functions and variables have been added.
* Functions:
* is_linux - Used to wrap a Linux specific section.
* block_device_wait - Waits for block devices to be added to /dev/.
* Variables: Linux Illumos
* ZVOL_DEVDIR "/dev/zvol" "/dev/zvol/dsk"
* ZVOL_RDEVDIR "/dev/zvol" "/dev/zvol/rdsk"
* DEV_DSKDIR "/dev" "/dev/dsk"
* DEV_RDSKDIR "/dev" "/dev/rdsk"
* NEWFS_DEFAULT_FS "ext2" "ufs"
* Many of the disabled test cases fail because 'zfs/zpool destroy'
returns EBUSY. This is largely causes by the asynchronous nature
of device handling on Linux and is expected, the impacted test
cases will need to be updated to handle this.
* There are several test cases which have been disabled because
they can trigger a deadlock. A primary example of this is to
recursively create zpools within zpools. These tests have been
disabled until the root issue can be addressed.
* Illumos specific utilities such as (mkfile) should be added to
the tests/zfs-tests/cmd/ directory. Custom programs required by
the test scripts can also be added here.
* SELinux should be either is permissive mode or disabled when
running the tests. The test cases should be updated to conform
to a standard policy.
* Redundant test functionality has been removed (zfault.sh).
* Existing test scripts (zconfig.sh) should be migrated to use
the framework for consistency and ease of testing.
* The DISKS environment variable currently only supports loopback
devices because of how the ZFS Test Suite expects partitions to
be named (p1, p2, etc). Support must be added to generate the
correct partition name based on the device location and name.
* The ZFS Test Suite is part of the illumos code base at:
https://github.com/illumos/illumos-gate/tree/master/usr/src/test
Original-patch-by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#6Closes#1534