This code has had an extensive rewrite and a good series of reviews, both by the author and other parties. This means a lot of code has been simplified. Pluggable structures for high-rate entropy generators are available, and it is most definitely not the case that /dev/random can be driven by only a hardware souce any more. This has been designed out of the device. Hardware sources are stirred into the CSPRNG (Yarrow, Fortuna) like any other entropy source. Pluggable modules may be written by third parties for additional sources.
The harvesting structures and consequently the locking have been simplified. Entropy harvesting is done in a more general way (the documentation for this will follow). There is some GREAT entropy to be had in the UMA allocator, but it is disabled for now as messing with that is likely to annoy many people.
The venerable (but effective) Yarrow algorithm, which is no longer supported by its authors now has an alternative, Fortuna. For now, Yarrow is retained as the default algorithm, but this may be changed using a kernel option. It is intended to make Fortuna the default algorithm for 11.0. Interested parties are encouraged to read ISBN 978-0-470-47424-2 "Cryptography Engineering" By Ferguson, Schneier and Kohno for Fortuna's gory details. Heck, read it anyway.
Many thanks to Arthur Mesh who did early grunt work, and who got caught in the crossfire rather more than he deserved to.
My thanks also to folks who helped me thresh this out on whiteboards and in the odd "Hallway track", or otherwise.
My Nomex pants are on. Let the feedback commence!
Reviewed by: trasz,des(partial),imp(partial?),rwatson(partial?)
Approved by: so(des)
rather than just void *.
Then, as part of this, convert a couple of mbuf m->m_data accesses
to mtod(m, const void *).
Reviewed by: markm
Approved by: security-officer (delphij)
Sponsored by: Netflix, Inc.
harvester, which now always calls hwrngs with the buffer length
multiple of the word size. This allows to remove the excessive memory
accesses to temporary buffer when saving the entropy word.
Streamline the assembly and unify it between i386 and amd64.
Reviewed by: markm, des
Approved by: so (des)
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
to dummy,yarrow and break the usability of /dev/random.
Fix the name of the tunable to something logical that 'sysctl kern.random'
emits.
Submitted by: des@ (the idea, code by me)
o Allow this to work with "nodevice random" by fixing where the MALLOC pool is defined.
o Fix the explicit reseed code. This was correct as submitted, but in the project branch doesn't need to set the "seeded" bit as this is done correctly in the "unblock" function.
o Remove some debug ifdeffing.
o Adjust comments.
I replaced the sx_* locks that Arthur used with regular mutexes; this turned out the be the wrong thing to do as the locks need to be sleepable. Revert this folly.
Submitted by: Arthur Mesh <arthurmesh@gmail.com> (In original diff)
extensions, we can change the .byte directives in sys/dev/random/ivy.c
to plain 'rdrand' mnemonics. This already worked for clang users, but
now it will also work for gcc users.
Approved by: re (kib)
Approved by: so (des)
MFC after: 1 week
Add a SYSINIT that forces a reseed during proc0 setup, which happens
fairly late in the boot process.
Add a RANDOM_DEBUG option which enables some debugging printf()s.
Add a new RANDOM_ATTACH entropy source which harvests entropy from the
get_cyclecount() delta across each call to a device attach method.
This means we can't count on /var being present, so something will need to be done about harvesting /var/db/entropy/... .
Some policy now needs to be sorted out, and a pre-sync cache needs to be written, but apart from that we are now ready to go.
Over to review.
Looking pretty good; this mostly works now. New code includes:
* Read cached entropy at startup, both from files and from loader(8) preloaded entropy. Failures are soft, but announced. Untested.
* Use EVENTHANDLER to do above just before we go multiuser. Untested.
been tested. With all sources turned on, this unlocks itself in
a couple of seconds! That is no my box, and there is no guarantee
that this will be the case everywhere.
* Cut debug prints.
* Use the same locks/mutexes all the way through.
* Be a tad more conservative about entropy estimates.
Simplify the malloc pools; We only need one for this device.
Simplify the harvest queue.
Marginally improve the entropy pool hashing, making it a bit faster in the process.
Connect up the hardware "live" source harvesting. This is simplistic for now, and will need to be made rate-adaptive.
All of the above passes a compile test but needs to be debugged.
Contains:
* Refactor the hardware RNG CPU instruction sources to feed into
the software mixer. This is unfinished. The actual harvesting needs
to be sorted out. Modified by me (see below).
* Remove 'frac' parameter from random_harvest(). This was never
used and adds extra code for no good reason.
* Remove device write entropy harvesting. This provided a weak
attack vector, was not very good at bootstrapping the device. To
follow will be a replacement explicit reseed knob.
* Separate out all the RANDOM_PURE sources into separate harvest
entities. This adds some secuity in the case where more than one
is present.
* Review all the code and fix anything obviously messy or inconsistent.
Address som review concerns while I'm here, like rename the pseudo-rng
to 'dummy'.
Submitted by: Arthur Mesh <arthurmesh@gmail.com> (the first item)
Pass the pointy hat please.
Also unblock the software (Yarrow) generator for now. This will be
reverted; Yarrow needs to block until secure, not this behaviour
of serving as soon as asked.
Folks with specific requiremnts will be able to (can!) unblock this
device with any write, and are encouraged to do so in /etc/rc.d/*
scripting. ("Any" in this case could be "echo '' > /dev/random" as
root).
1) Clean up namespace; only use "Yarrow" where it is Yarrow-specific
or close enough to the Yarrow algorithm. For the rest use a neutral
name.
2) Tidy up headers; put private stuff in private places. More could
be done here.
3) Streamline the hashing/encryption; no need for a 256-bit counter;
128 bits will last for long enough.
There are bits of debug code lying around; these will be removed
at a later stage.
* It's not meant to be used in a real system, it's there to show how
the basics of how to create interfaces for random_adaptors. Perhaps
it should belong in a manual page
2) Move probe.c's functionality in to random_adaptors.c
* rename random_ident_hardware() to random_adaptor_choose()
3) Introduce a new way to choose (or select) random_adaptors via tunable
"rngs_want" It's a list of comma separated names of adaptors, ordered
by preferences. I.e.:
rngs_want="yarrow,rdrand"
Such setting would cause yarrow to be preferred to rdrand. If neither of
them are available (or registered), then system will default to
something reasonable (currently yarrow). If yarrow is not present, then
we fall back to the adaptor that's first on the list of registered
adaptors.
4) Introduce a way where RNGs can play a role of entropy source. This is
mostly useful for HW rngs.
The way I envision this is that every HW RNG will use this
functionality by default. Functionality to disable this is also present.
I have an example of how to use this in random_adaptor_example.c (see
modload event, and init function)
5) fix kern.random.adaptors from
kern.random.adaptors: yarrowpanicblock
to
kern.random.adaptors: yarrow,panic,block
6) add kern.random.active_adaptor to indicate currently selected
adaptor:
root@freebsd04:~ # sysctl kern.random.active_adaptor
kern.random.active_adaptor: yarrow
Submitted by: Arthur Mesh <arthurmesh@gmail.com>
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: so (des)
* Make Yarrow an optional kernel component -- enabled by "YARROW_RNG" option.
The files sha2.c, hash.c, randomdev_soft.c and yarrow.c comprise yarrow.
* random(4) device doesn't really depend on rijndael-*. Yarrow, however, does.
* Add random_adaptors.[ch] which is basically a store of random_adaptor's.
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: obrien
* Make Yarrow an optional kernel component -- enabled by "YARROW_RNG" option.
The files sha2.c, hash.c, randomdev_soft.c and yarrow.c comprise yarrow.
* random(4) device doesn't really depend on rijndael-*. Yarrow, however, does.
* Add random_adaptors.[ch] which is basically a store of random_adaptor's.
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: obrien
structure copying in random_ident_hardware(). This change will also help
further modularization of random(4) subsystem.
Submitted by: arthurmesh@gmail.com
Reviewed by: obrien
Obtained from: Juniper Networks
Specify that wakeup rate of 7.5-10Hz is enough for yarrow harvesting
thread.
Sponsored by: Google Summer of Code 2012, iXsystems inc.
Tested by: flo, marius, ian, markj, Fabian Keil
generator, found on IvyBridge and supposedly later CPUs, accessible
with RDRAND instruction.
From the Intel whitepapers and articles about Bull Mountain, it seems
that we do not need to perform post-processing of RDRAND results, like
AES-encryption of the data with random IV and keys, which was done for
Padlock. Intel claims that sanitization is performed in hardware.
Make both Padlock and Bull Mountain random generators support code
covered by kernel config options, for the benefit of people who prefer
minimal kernels. Also add the tunables to disable hardware generator
even if detected.
Reviewed by: markm, secteam (simon)
Tested by: bapt, Michael Moll <kvedulv@kvedulv.de>
MFC after: 3 weeks
64bit and 32bit ABIs. As a side-effect, it enables AVX on capable
CPUs.
In particular:
- Query the CPU support for XSAVE, list of the supported extensions
and the required size of FPU save area. The hw.use_xsave tunable is
provided for disabling XSAVE, and hw.xsave_mask may be used to
select the enabled extensions.
- Remove the FPU save area from PCB and dynamically allocate the
(run-time sized) user save area on the top of the kernel stack,
right above the PCB. Reorganize the thread0 PCB initialization to
postpone it after BSP is queried for save area size.
- The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as
well. FPU state is only useful for suspend, where it is saved in
dynamically allocated suspfpusave area.
- Use XSAVE and XRSTOR to save/restore FPU state, if supported and
enabled.
- Define new mcontext_t flag _MC_HASFPXSTATE, indicating that
mcontext_t has a valid pointer to out-of-struct extended FPU
state. Signal handlers are supplied with stack-allocated fpu
state. The sigreturn(2) and setcontext(2) syscall honour the flag,
allowing the signal handlers to inspect and manipilate extended
state in the interrupted context.
- The getcontext(2) never returns extended state, since there is no
place in the fixed-sized mcontext_t to place variable-sized save
area. And, since mcontext_t is embedded into ucontext_t, makes it
impossible to fix in a reasonable way. Instead of extending
getcontext(2) syscall, provide a sysarch(2) facility to query
extended FPU state.
- Add ptrace(2) support for getting and setting extended state; while
there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries.
- Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to
consumers, making it opaque. Internally, struct fpu_kern_ctx now
contains a space for the extended state. Convert in-kernel consumers
of fpu_kern KPI both on i386 and amd64.
First version of the support for AVX was submitted by Tim Bird
<tim.bird am sony com> on behalf of Sony. This version was written
from scratch.
Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org>
MFC after: 1 month