The comment above ieee80211_ageq_cleanup specifically notes that the queue
is assumed to be empty, and in order to make it so, ieee80211_ageq_drain
must be used.
Submitted by: Augustin Cavalier <waddlesplash@gmail.com>
Obtained from: Haiku (dffc3e235360cd7b71261239ee8507b7d62a1471)
MFC after: 1 week
Select proper mode when node can do VHT.
Currently there are no drivers with VHT support in the tree,
so this should be noop.
Reviewed by: adrian
Differential Revision: https://reviews.freebsd.org/D9806
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
No functional change intended.
* Migrate the rx_params stuff out from ieee80211_freebsd.h where it doesn't belong -
this isn't freebsd specific anymore.
* Don't use a hard-coded number of chains in the ioctl header; now we can shuffle
MAX_CHAINS around so it can be used in the right spot.
* Extend the signal/noisefloor levels in the mimo stats struct to userland to include
the signal and noisefloor levels for each 20MHz slice of a 160MHz channel.
* Bump the number of EVM pilots in preparation for 4x4 and 160MHz channels.
Tested:
* ath(4), STA mode
* iwn(4), STA mode
* local ath10k port, STA mode
TODO:
* 11ax chips will come with 5GHz 8x8 hardware for lots of MU-MIMO - I'll re-bump it
at that point.
Note:
* This breaks the driver and ifconfig ABI; please recompile the kernel,
ifconfig and wpa_supplicant/hostapd.
Flags
- IEEE80211_F_ASCAN
- IEEE80211_F_SIBSS
- IEEE80211_F_IBSSON
are not used since r170530 (old WI compatibility ioctls removal)
and r178354 (removed from other places).
IEEE80211_F_TXPOW_FIXED was never utilized; initially added with
IEEE80211_F_TXPOW_AUTO / IEEE80211_F_TXPOW_OFF flags,
which were replaced with IEEE80211_C_TXPMGT capability check in r138568.
Reviewed by: adrian
Differential Revision: https://reviews.freebsd.org/D9369
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
This just stores pointers to the IE; it doesn't yet parse anything.
Note: it blows out the size of ieee80211_node, so this will require
ye olde kernel/modules recompile.
* Pepper comments around which describe what state(s) we're in when faking
up 11n nodes.
* By default don't fake it up as 11n until we properly negotiate the 11n
capabilities using probe request/response frames.
* Send a probe request with our HT information, as the 802.11-2012 spec
suggests.
* Reassociate with the driver if we've been promoted.
This is done because although learning a peer via beacons can learn 11n
state, learning peers via hearing probe frames and broadcast frames
does not. Thus, sometimes you end up with an 11n peer in the peer
table and sometimes you don't.
Note that the probe request/response exchange may not actually succeed.
Ideally we'd put the peer into some blocking state until we've exchanged
probe request/reponse to learn capabilities, or we timeout and just
stay non-11n.
This is more an experiment to get 11n IBSS nodes actually discovering
each other and be able to transmit. There are other issues that creep
up which I'll attempt to address in future commits.
Tested:
* AR9380 NICs in 11n mode.
Reviewed by: avos
Differential Revision: https://reviews.freebsd.org/D8365
- Add a counter into 'struct ieee80211_node_table' to save current number
of allocated nodes.
(allows to remove array overflow checking in ieee80211_iterate_nodes()).
- Add ieee80211_iterate_nodes_vap() function; unlike non-vap version,
it iterates on nodes for specified vap only.
In addition to the above:
- Remove ieee80211_iterate_nt(); it is not used by drivers / net80211
outside ieee80211_iterate_nodes() function + cannot be separated due
to structural changes in code.
Since size of 'struct ieee80211_node_table' (part of ieee80211com,
which is a part of driver's softc) is changed all wireless drivers /
kernel need to be recompiled.
Tested with wpi(4), STA mode.
Reviewed by: adrian
Differential Revision: https://reviews.freebsd.org/D7996
The adhoc probe/beacon input path was creating nodes for all SSIDs.
This wasn't a problem when the NICs were configured to only process
frames for the current BSSID, but that didn't allow IBSS merges.
Once avos and I flipped on "beacons from all BSSIDs" to allow for
correct IBSS merging, we found this interesting behaviour.
This adds a check against the current SSID.
* If there's no VAP SSID, allow anything
* If there's a VAP SSID, check if the incoming frame has a suitable
SSID and if so, allow it.
This prevents nodes being created for other SSIDs in probe and beacon
frames - ie, beacons overlapping IBSSes with different SSIDs, and
probe requests from arbitrary devices.
Tested:
* AR9380, IBSS mode, both local and other IBSSes.
Reviewed by: avos
Differential Revision: https://reviews.freebsd.org/D7959
Drop scan generation number and node table scan lock - the only place
where ni_scangen is checked is in ieee80211_timeout_stations() (and it
is used to prevent duplicate checking of the same node); node scan lock
protects only this variable + node table scan generation number.
This will fix (at least) next LOR (hostap mode):
lock order reversal:
1st 0xc175f84c urtwm0_scan_loc (urtwm0_scan_loc) @ /usr/src/sys/modules/wlan/../../net80211/ieee80211_node.c:2019
2nd 0xc175e018 urtwm0_com_lock (urtwm0_com_lock) @ /usr/src/sys/modules/wlan/../../net80211/ieee80211_node.c:2693
stack backtrace:
#0 0xa070d1c5 at witness_debugger+0x75
#1 0xa070d0f6 at witness_checkorder+0xd46
#2 0xa0694cce at __mtx_lock_flags+0x9e
#3 0xb03ad9ef at ieee80211_node_leave+0x12f
#4 0xb03afd13 at ieee80211_timeout_stations+0x483
#5 0xb03aa1c2 at ieee80211_node_timeout+0x42
#6 0xa06c6fa1 at softclock_call_cc+0x1e1
#7 0xa06c7518 at softclock+0xc8
#8 0xa06789ae at intr_event_execute_handlers+0x8e
#9 0xa0678fa0 at ithread_loop+0x90
#10 0xa0675fbe at fork_exit+0x7e
#11 0xa08af910 at fork_trampoline+0x8
In addition to the above:
* switch to ieee80211_iterate_nodes();
* do not assert that node table lock is held, while calling node_age();
that's not really needed (there are no resources, which can be protected
by this lock) + this fixes LOR/deadlock between ieee80211_timeout_stations()
and ieee80211_set_tim() (easy to reproduce in HOSTAP mode while
sending something to an STA with enabled power management).
Tested:
* (avos) urtwn0, hostap mode
* (adrian) AR9380, STA mode
* (adrian) AR9380, AR9331, AR9580, hostap mode
Notes:
* This changes the net80211 internals, so you have to recompile all of it
and the wifi drivers.
Submitted by: avos
Approved by: re (delphij)
Differential Revision: https://reviews.freebsd.org/D6833
The ath(4) driver now sees beacons and management frames for different
BSSIDs in IBSS mode, which is a problem when you're in a very busy
IBSS environment.
So, expose this function so drivers can use it to check if the current
RX node is actually for a BSS we need to pay attention to or not.
PR: kern/208644
Sponsored by: Eva Automation. Inc.
A-MSDU is another 11n aggregation mechanism where multiple ethernet
frames get LLC encapsulated (so they have a length field), padded,
and put in a single MPDU (802.11 MAC frame.) This means it gets sent
out as a single frame, with a single seqno, it's acked as one frame, etc.
It turns out that, hah, atheros fast frames is almost but not quite
like this, so I'm reusing all of the current superg/fast-frames stuff
in order to actually transmit A-MSDU. Yes, this means that A-MSDU
frames are also only aggregated two at a time, so it's not necessarily
a huge win, but it's better than nothing.
This doesn't do anything by default - the driver needs to say it does
A-MSDU as well as set the AMSDU software TX capability so this code path
gets exercised.
For now, the only driver that enables this is urtwn. I'll enable it
for rsu at some point soon.
Tested:
* Add an amsdu encap path to aggregate two frames, same as the
fast-frames path.
* Always do the superg init/teardown and node init/teardown stuff,
regardless of whether the nodes are doing fast-frames (the ATH
capability stuff.) That way we can reuse it for amsdu.
* Don't do AMSDU for multicast/broadcast and EAPOL frames.
* If we're doing A-MPDU, then don't bother doing FF/A-MSDU.
We can likely do both together, but I don't want to change
behaviour.
* Teach the fast frames approx txtime logic to support the 11n
rates. But, since we don't currently have a full "current rate"
support, assume it's HT20, long-gi, etc. That way we overshoot
on the TX time estimation, so we're always inside the requirements.
(And we only aggregate two frames for now, so we're not really
going to exceed that.)
* Drop the maximum FF age default down to 2ms, otherwise we end up
with some very annoyingly large latencies.
TODO:
* We only aggregate two ethernet frames, so I'm not checking the max
A-MSDU size. But when it comes time to support >2 frames, we should
obey that.
Tested:
* urtwn(4)
It turns out that these will clash very annoyingly with the linux
macros in the linuxkpi layer, so let the wookie^Wlinux win.
The only user that I can find is ath(4), so fix it there too.
Remove duplicate 'ni->ni_associd = 0' assignment from
ieee80211_node_leave(), since it breaks iv_set_tim() in
ic->ic_node_cleanup() (associd is cleared right after this call).
Tested with RTL8188EU (HOSTAP mode) and
WUSB54GC (STA mode, with powersaving enabled).
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D5398
DragonflyBSD uses the FreeBSD wireless stack and drivers. Their malloc()
API is named differently, so they don't have userland/kernel symbol
clashes like we do (think libuinet.)
So, to make it easier for them and to port to other BSDs/other operating
systems, start hiding the malloc specific bits behind defines in
ieee80211_freebsd.h.
DragonflyBSD can now put these portability defines in their local
ieee80211_dragonflybsd.h.
This should be a great big no-op for everyone running wifi.
TODO:
* kill M_WAITOK - some platforms just don't want you to use it
* .. and/or handle it returning NULL rather than waiting forever.
* MALLOC_DEFINE() ?
* Migrate the well-known malloc names (eg M_TEMP) to net80211
namespace defines.
years for head. However, it is continuously misused as the mpsafe argument
for callout_init(9). Deprecate the flag and clean up callout_init() calls
to make them more consistent.
Differential Revision: https://reviews.freebsd.org/D2613
Reviewed by: jhb
MFC after: 2 weeks
This may happen on RUN -> SCAN -> RUN -> SCAN state transition:
1. RUN -> SCAN: in ieee80211_sta_join1(): iv_bss will be moved to obss,
refcnt will be reduced by 2 (default minimum).
Now, if old iv_bss have some extra references (for example, from
unacknowledged probe responses), it will not be freed and will stay
in the node table.
2. SCAN -> RUN.
3. If old iv_bss will not be deleted by the time when the next RUN -> SCAN
state transition occurs, then sta_leave() will reduce it's reference
counter once more. As a result, two last users will free it -> this will
lead to kernel panic.
In this patch old iv_bss entry is explicitly removed from the node table in
ieee80211_sta_join1() (as a result, it will not be processed by sta_leave()).
PR: kern/199676
Differential Revision: Andriy Voskoboinyk <s3erios@gmail.com>
to this event, adding if_var.h to files that do need it. Also, include
all includes that now are included due to implicit pollution via if_var.h
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
* Add HTINFO field decoding to ieee80211_ies_expand() - it's likely not
100% correct as it's not looking at the draft 11n HTINFO location,
but I don't think anyone will care.
* When doing an IBSS join make sure the 11n channel configuration
is used - otherwise the 11a/11bg channel will be used
and there won't be any chance for an upgrade to 11n.
* When creating an IBSS network, ensure the channel is updated to an
11n channel so other 11n nodes can see it and speak to it with MCS
rates.
* Add a bit of code that's disabled for now which handles the HT
field updating. This won't work out very well with lots of adhoc
nodes as we'd end up ping-ponging between the HT configuration for
each node. Instead, we should likely only pay attention to the
"master" node we initially associated against and then ensure we
propagate that information forward in our subsequent beacons. However,
due to the nature of IBSS (ie, there's no specific "master" node in
the specification) it's unclear which node we should lift the HT
parameters from.
So for now this assumes the HT parameters are squirreled away in the
initial beacon/probe response.
So there's some trickiness here.
With ap/sta pairing, the probe response just populates a legacy node
and the association request/response is what is used for negotiation
11n-ness (and upgrading things as needed.)
With ibss networks, the pairing is done with probe request/response,
with discovery being done by creating nodes when new beacons in the
IBSS / BSSID are heard. There's no assoc request/response frames going on.
So the trick here has been to figure out where to upgrade things.
I don't like how I just taught ieee80211_sta_join() to "speak" HT -
I'd rather there be an upgrade path when an IBSS node joins and there
are HT parameters present. Once I've done that, I'll kill this
HT special casing that's going on in ieee80211_sta_join().
Tested:
* AR9280, AR5416, AR5212 - basic iperf and ping interoperability tests
whilst in a non-encrypted adhoc network.
TODO:
* Fix up the HT upgrade path for IBSS nodes rather than adding code
in ieee80211_sta_join(), then remove my code from there.
* When associating, there's a concept of a "master" node in the IBSS
which is the node you first joined the network through. It's possible
the correct thing to do is to listen to HT updates and configure WME
parameters from that node. However, once that node goes away, which
node(s) should be listened to for configuration changes?
For things like HT channel width, it's likely going to be ok to
just associate as HT40 and then use the per-neighbor rate control
and HTINFO/HTCAP fields to figure out which rates and configuration
to speak. Ie, for a 20MHz 11n node, just speak 20MHz rates to
it. It shouldn't "change", like what goes on in AP/STA configurations.
iterate lock.
This causes LORs and deadlocks as some code paths will have the com lock
held when calling ieee80211_iterate_nodes().
Here, the comlock isn't held during the node table and node iteration
locks; and the callback isn't called with any (extra) lock held.
PR: kern/170098
Submitted by: moonlightakkiy@yahoo.ca
MFC after: 4 weeks
Currently, a channel width change updates the 802.11n HT info data in
net80211 but it doesn't trigger any device changes. So the device
driver may decide that HT40 frames can be transmitted but the last
device channel set only had HT20 set.
Now, a task is scheduled so a hardware reset or change isn't done
during any active ongoing RX. It also means that it's serialised
with the other task operations (eg channel change.)
This isn't the final incantation of this work, see below.
For now, any unmodified drivers will simply receive a channel
change log entry. A subsequent patch to ath(4) will introduce
some basic channel change handling (by resetting the NIC.)
Other NICs may need to update their rate control information.
TODO:
* There's still a small window at the present moment where the
channel width has been updated but the task hasn't been fired.
The final version of this should likely pass in a channel width
field to the driver and let the driver atomically do whatever
it needs to before changing the channel.
PR: kern/166286
This introduces struct ieee80211_rx_stats - which stores the various kinds
of RX statistics which a MIMO and non-MIMO 802.11 device can export.
It also fleshes out the mimo export to userland (node_getmimoinfo()).
It assumes that MIMO radios (for now) export both ctl and ext channels.
Non-11n MIMO radios are possible (and I believe Atheros made at least
one), so if that chipset support is added, extra flags to the
struct ieee80211_rx_stats can be added to extend this support.
Two new input functions have been added - ieee80211_input_mimo() and
ieee80211_input_mimo_all() - which MIMO-aware devices can call with
MIMO specific statistics.
802.11 devices calling the non-MIMO input functions will still function.
This fixes hostap mode for at least ral(4) and run(4), because there is
no sufficient call into drivers which could be used initialize the node
related ratectl variables.
MFC after: 3 days
the IEEE80211_C_RATECTL flag set, default to NONE for all drivers. Only if
a driver calls ieee80211_ratectl_init() check if the NONE algo is still
selected and try to use AMRR in that case. Drivers are still free to use
any other algo by calling ieee80211_ratectl_set() prior to the
ieee80211_ratectl_init() call.
After this change it is now safe to assume that a ratectl algo is always
available and selected, which renders the IEEE80211_C_RATECTL flag pretty
much useless. Therefore revert r211314 and 211546.
Reviewed by: rpaulo
MFC after: 2 weeks
This framework allows drivers to abstract the rate control algorithm and
just feed the framework with the usable parameters. The rate control
framework will now deal with passing the parameters to the selected
algorithm. Right now we have AMRR (the default) and RSSADAPT but there's
no way to select one with ifconfig, yet.
The objective is to have more rate control algorithms in the net80211
stack so all drivers[0] can use it. Ideally, we'll have the well-known
sample rate control algorithm in the net80211 at some point so all
drivers can use it (not just ath).
[0] all drivers that do rate control in software, that is.
Reviewed by: bschmidt, thompsa, weyongo
MFC after: 1 months
net80211 wireless stack. This work is based on the March 2009 D3.0 draft
standard. This standard is expected to become final next year.
This includes two main net80211 modules, ieee80211_mesh.c
which deals with peer link management, link metric calculation,
routing table control and mesh configuration and ieee80211_hwmp.c
which deals with the actually routing process on the mesh network.
HWMP is the mandatory routing protocol on by the mesh standard, but
others, such as RA-OLSR, can be implemented.
Authentication and encryption are not implemented.
There are several scripts under tools/tools/net80211/scripts that can be
used to test different mesh network topologies and they also teach you
how to setup a mesh vap (for the impatient: ifconfig wlan0 create
wlandev ... wlanmode mesh).
A new build option is available: IEEE80211_SUPPORT_MESH and it's enabled
by default on GENERIC kernels for i386, amd64, sparc64 and pc98.
Drivers that support mesh networks right now are: ath, ral and mwl.
More information at: http://wiki.freebsd.org/WifiMesh
Please note that this work is experimental. Also, please note that
bridging a mesh vap with another network interface is not yet supported.
Many thanks to the FreeBSD Foundation for sponsoring this project and to
Sam Leffler for his support.
Also, I would like to thank Gateworks Corporation for sending me a
Cambria board which was used during the development of this project.
Reviewed by: sam
Approved by: re (kensmith)
Obtained from: projects/mesh11s
long-term work before they can be serviced. Packets are tagged and
assigned an age (in seconds) at the point they are added to the
queue. If a packet is not retrieved before it's age expires it is
reclaimed. Tagging can take two forms: a reference to an ieee80211_node
(as happens in the tx path) or an opaque token in cases where there
is no reference or the node structure is not stable (i.e. it's going
to be destroyed).
o add ic_stageq to replace the per-node wds staging queue used for
dynamic wds
o add ieee80211_mac_hash for building ageq tokens; this computes a
32-bit hash from an 802.11 mac address (copied from the bridge)
o while here fix a stray ';' noticed in IEEE80211_PSQ_INIT
Reviewed by: rpaulo
Approved by: re (kensmith)
we receive the AssocResp, so we can only set ni_txparms properly
at that point. To make this possible make node_setuptxparms public
as ieee80211_node_setuptxparms.
o replace DLT_IEEE802_11 support in net80211 with DLT_IEEE802_11_RADIO
and remove explicit bpf support from wireless drivers; drivers now
use ieee80211_radiotap_attach to setup shared data structures that
hold the radiotap header for each packet tx/rx
o remove rx timestamp from the rx path; it was used only by the tdma support
for debugging and was mostly useless due to it being 32-bits and mostly
unavailable
o track DLT_IEEE80211_RADIO bpf attachments and maintain per-vap and
per-com state when there are active taps
o track the number of monitor mode vaps
o use bpf tap and monitor mode vap state to decide when to collect radiotap
state and dispatch frames; drivers no longer explicitly directly check
bpf state or use bpf calls to tap frames
o handle radiotap state updates on channel change in net80211; drivers
should not do this (unless they bypass net80211 which is almost always
a mistake)
o update various drivers to be more consistent/correct in handling radiotap
o update ral to include TSF in radiotap'd frames
o add promisc mode callback to wi
Reviewed by: cbzimmer, rpaulo, thompsa