This effectively makes the stack base on the csu _start entry
randomized.
The gap is enabled if ASLR is for the ABI is enabled, and then
kern.elf{64,32}.aslr.stack_gap specify the max percentage of the
initial stack size that can be wasted for gap. Setting it to zero
disables the gap, and max is capped at 50%.
Only amd64 for now.
Reviewed by: cem, markj
Discussed with: emaste
MFC after: 2 weeks
Sponsored by: The FreeBSD Foundation
Differential revision: https://reviews.freebsd.org/D21081
In all of the architectures we have today, we always use PAGE_SIZE.
While in theory one could define different things, none of the
current architectures do, even the ones that have transitioned from
32-bit to 64-bit like i386 and arm. Some ancient mips binaries on
other systems used 8k instead of 4k, but we don't support running
those and likely never will due to their age and obscurity.
Reviewed by: imp (who also contributed the commit message)
Sponsored by: DARPA, AFRL
Differential Revision: https://reviews.freebsd.org/D19280
With this change, randomization can be enabled for all non-fixed
mappings. It means that the base address for the mapping is selected
with a guaranteed amount of entropy (bits). If the mapping was
requested to be superpage aligned, the randomization honours the
superpage attributes.
Although the value of ASLR is diminshing over time as exploit authors
work out simple ASLR bypass techniques, it elimintates the trivial
exploitation of certain vulnerabilities, at least in theory. This
implementation is relatively small and happens at the correct
architectural level. Also, it is not expected to introduce
regressions in existing cases when turned off (default for now), or
cause any significant maintaince burden.
The randomization is done on a best-effort basis - that is, the
allocator falls back to a first fit strategy if fragmentation prevents
entropy injection. It is trivial to implement a strong mode where
failure to guarantee the requested amount of entropy results in
mapping request failure, but I do not consider that to be usable.
I have not fine-tuned the amount of entropy injected right now. It is
only a quantitive change that will not change the implementation. The
current amount is controlled by aslr_pages_rnd.
To not spoil coalescing optimizations, to reduce the page table
fragmentation inherent to ASLR, and to keep the transient superpage
promotion for the malloced memory, locality clustering is implemented
for anonymous private mappings, which are automatically grouped until
fragmentation kicks in. The initial location for the anon group range
is, of course, randomized. This is controlled by vm.cluster_anon,
enabled by default.
The default mode keeps the sbrk area unpopulated by other mappings,
but this can be turned off, which gives much more breathing bits on
architectures with small address space, such as i386. This is tied
with the question of following an application's hint about the mmap(2)
base address. Testing shows that ignoring the hint does not affect the
function of common applications, but I would expect more demanding
code could break. By default sbrk is preserved and mmap hints are
satisfied, which can be changed by using the
kern.elf{32,64}.aslr.honor_sbrk sysctl.
ASLR is enabled on per-ABI basis, and currently it is only allowed on
FreeBSD native i386 and amd64 (including compat 32bit) ABIs. Support
for additional architectures will be added after further testing.
Both per-process and per-image controls are implemented:
- procctl(2) adds PROC_ASLR_CTL/PROC_ASLR_STATUS;
- NT_FREEBSD_FCTL_ASLR_DISABLE feature control note bit makes it possible
to force ASLR off for the given binary. (A tool to edit the feature
control note is in development.)
Global controls are:
- kern.elf{32,64}.aslr.enable - for non-fixed mappings done by mmap(2);
- kern.elf{32,64}.aslr.pie_enable - for PIE image activation mappings;
- kern.elf{32,64}.aslr.honor_sbrk - allow to use sbrk area for mmap(2);
- vm.cluster_anon - enables anon mapping clustering.
PR: 208580 (exp runs)
Exp-runs done by: antoine
Reviewed by: markj (previous version)
Discussed with: emaste
Tested by: pho
MFC after: 1 month
Sponsored by: The FreeBSD Foundation
Differential revision: https://reviews.freebsd.org/D5603
opt_compat.h is mentioned in nearly 180 files. In-progress network
driver compabibility improvements may add over 100 more so this is
closer to "just about everywhere" than "only some files" per the
guidance in sys/conf/options.
Keep COMPAT_LINUX32 in opt_compat.h as it is confined to a subset of
sys/compat/linux/*.c. A fake _COMPAT_LINUX option ensure opt_compat.h
is created on all architectures.
Move COMPAT_LINUXKPI to opt_dontuse.h as it is only used to control the
set of compiled files.
Reviewed by: kib, cem, jhb, jtl
Sponsored by: DARPA, AFRL
Differential Revision: https://reviews.freebsd.org/D14941
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
sysent.
sv_prepsyscall is unused.
sv_sigsize and sv_sigtbl translate signal number from the FreeBSD
namespace into the ABI domain. It is only utilized on i386 for iBCS2
binaries. The issue with this approach is that signals for iBCS2 were
delivered with the FreeBSD signal frame layout, which does not follow
iBCS2. The same note is true for any other potential user if
sv_sigtbl. In other words, if ABI needs signal number translation, it
really needs custom sv_sendsig method instead.
Sponsored by: The FreeBSD Foundation
sysentvec. This allows the timekeep data to be shared between similar
ABIs which cannot share sysentvec.
Make the timekeep_push_vdso() tick callback to the timekeep structures
instead of sysentvecs. If several sysentvec share the vdso_sv_tk
structure, we would update the userspace data several times on each
tick, without the change.
Only allocate vdso_sv_tk in the exec_sysvec_init() sysinit when
sysentvec is marked with the new SV_TIMEKEEP flag. This saves
allocation and update of unneeded vdso_sv_tk for ABIs which do not
provide userspace gettimeofday yet, which are PowerPCs arches right
now.
Make vdso_sv_tk allocator public, namely split out and export
alloc_sv_tk() and alloc_sv_tk_compat32(). ABIs which share timekeep
data now can allocate it manually and share as appropriate.
Requested by: nwhitehorn
Tested by: nwhitehorn, pho
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
- Dump an NT_X86_XSTATE note if XSAVE is in use. This note is designed
to match what Linux does in that 1) it dumps the entire XSAVE area
including the fxsave state, and 2) it stashes a copy of the current
xsave mask in the unused padding between the fxsave state and the
xstate header at the same location used by Linux.
- Teach readelf() to recognize NT_X86_XSTATE notes.
- Change PT_GET/SETXSTATE to take the entire XSAVE state instead of
only the extra portion. This avoids having to always make two
ptrace() calls to get or set the full XSAVE state.
- Add a PT_GET_XSTATE_INFO which returns the length of the current
XSTATE save area (so the size of the buffer needed for PT_GETXSTATE)
and the current XSAVE mask (%xcr0).
Differential Revision: https://reviews.freebsd.org/D1193
Reviewed by: kib
MFC after: 2 weeks
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
The SYSCTL_NODE macro defines a list that stores all child-elements of
that node. If there's no SYSCTL_DECL macro anywhere else, there's no
reason why it shouldn't be static.
In particular:
- implement compat shims for old stat(2) variants and ogetdirentries(2);
- implement delivery of signals with ancient stack frame layout and
corresponding sigreturn(2);
- implement old getpagesize(2);
- provide a user-mode trampoline and LDT call gate for lcall $7,$0;
- port a.out image activator and connect it to the build as a module
on amd64.
The changes are hidden under COMPAT_43.
MFC after: 1 month
explicit process at fork trampoline path instead of eventhadler(schedtail)
invocation for each child process.
Remove eventhandler(schedtail) code and change linux ABI to use newly added
sysvec method.
While here replace explicit comparing of module sysentvec structure with the
newly created process sysentvec to detect the linux ABI.
Discussed with: kib
MFC after: 2 Week
setting SV_SHP flag and providing pointer to the vm object and mapping
address. Provide simple allocator to carve space in the page, tailored
to put the code with alignment restrictions.
Enable shared page use for amd64, both native and 32bit FreeBSD
binaries. Page is private mapped at the top of the user address
space, moving a start of the stack one page down. Move signal
trampoline code from the top of the stack to the shared page.
Reviewed by: alc
Extend struct sysvec with three new elements:
sv_fetch_syscall_args - the method to fetch syscall arguments from
usermode into struct syscall_args. The structure is machine-depended
(this might be reconsidered after all architectures are converted).
sv_set_syscall_retval - the method to set a return value for usermode
from the syscall. It is a generalization of
cpu_set_syscall_retval(9) to allow ABIs to override the way to set a
return value.
sv_syscallnames - the table of syscall names.
Use sv_set_syscall_retval in kern_sigsuspend() instead of hardcoding
the call to cpu_set_syscall_retval().
The new functions syscallenter(9) and syscallret(9) are provided that
use sv_*syscall* pointers and contain the common repeated code from
the syscall() implementations for the architecture-specific syscall
trap handlers.
Syscallenter() fetches arguments, calls syscall implementation from
ABI sysent table, and set up return frame. The end of syscall
bookkeeping is done by syscallret().
Take advantage of single place for MI syscall handling code and
implement ptrace_lwpinfo pl_flags PL_FLAG_SCE, PL_FLAG_SCX and
PL_FLAG_EXEC. The SCE and SCX flags notify the debugger that the
thread is stopped at syscall entry or return point respectively. The
EXEC flag augments SCX and notifies debugger that the process address
space was changed by one of exec(2)-family syscalls.
The i386, amd64, sparc64, sun4v, powerpc and ia64 syscall()s are
changed to use syscallenter()/syscallret(). MIPS and arm are not
converted and use the mostly unchanged syscall() implementation.
Reviewed by: jhb, marcel, marius, nwhitehorn, stas
Tested by: marcel (ia64), marius (sparc64), nwhitehorn (powerpc),
stas (mips)
MFC after: 1 month
for upcoming 64-bit PowerPC and MIPS support. This renames the COMPAT_IA32
option to COMPAT_FREEBSD32, removes some IA32-specific code from MI parts
of the kernel and enhances the freebsd32 compatibility code to support
big-endian platforms.
Reviewed by: kib, jhb
first and the native ia32 compat as middle (before other things).
o(ld)brandinfo as well as third party like linux, kfreebsd, etc.
stays on SI_ORDER_ANY coming last.
The reason for this is only to make sure that even in case we would
overflow the MAX_BRANDS sized array, the native FreeBSD brandinfo
would still be there and the system would be operational.
Reviewed by: kib
MFC after: 1 month
correctly and do not match a colliding Debian GNU/kFreeBSD
brandinfo statements.
For this mark the Debian GNU/kFreeBSD brandinfo that it must have
an .note.ABI-tag section and ignore the old EI_OSABI brandinfo
when comparing a possibly colliding set of options.
Due to SYSINIT we add the brandinfo in a non-deterministic order,
so native FreeBSD is not always first. We may want to consider
to force native FreeBSD to come first as well.
The only way a problem could currently be noticed is when running an
i386 binary without the .note.ABI-tag on amd64 and the Debian GNU/kFreeBSD
brandinfo was matched first, as the fallback to ld-elf32.so.1 does
not exist in that case.
Reported and tested by: ticso
In collaboration with: kib
MFC after: 3 days
Handle GNU/Linux according to LSB Core Specification 4.0,
Chapter 11. Object Format, 11.8. ABI note tag.
Also check the first word of desc, not only name, according to
glibc abi-tags specification to distinguish between Linux and
kFreeBSD.
Add explicit handling for Debian GNU/kFreeBSD, which runs
on our kernels as well [2].
In {amd64,i386}/trap.c, when checking osrel of the current process,
also check the ABI to not change the signal behaviour for Linux
binary processes, now that we save an osrel version for all three
from the lists above in struct proc [2].
These changes make it possible to run FreeBSD, Debian GNU/kFreeBSD
and Linux binaries on the same machine again for at least i386 and
amd64, and no longer break kFreeBSD which was detected as GNU(/Linux).
PR: kern/135468
Submitted by: dchagin [1] (initial patch)
Suggested by: kib [2]
Tested by: Petr Salinger (Petr.Salinger seznam.cz) for kFreeBSD
Reviewed by: kib
MFC after: 3 days
1) Move the new field (brand_note) to the end of the Brandinfo structure.
2) Add a new flag BI_BRAND_NOTE that indicates that the brand_note pointer
is valid.
3) Use the brand_note field if the flag BI_BRAND_NOTE is set and as old
modules won't have the flag set, so the new field brand_note would be
ignored.
Suggested by: jhb
Reviewed by: jhb
Approved by: kib (mentor)
MFC after: 6 days
".note.ABI-tag" section.
The search order of a brand is changed, now first of all the
".note.ABI-tag" is looked through.
Move code which fetch osreldate for ELF binary to check_note() handler.
PR: 118473
Approved by: kib (mentor)
of the ABI of the currently executing image. Change some places to test
the flags instead of explicit comparing with address of known sysentvec
structures to determine ABI features.
Discussed with: dchagin, imp, jhb, peter
includes syscall32_{de,}register() routines as well as a module handler
and wrapper macros similar to the support for native syscalls in
<sys/sysent.h>.
MFC after: 1 month
to the C99 style. At least, it is easier to read sysent definitions
that way, and search for the actual instances of sigcode etc.
Explicitely initialize sysentvec.sv_maxssiz that was missed in most
sysvecs.
No objection from: jhb
MFC after: 1 month
kernels exposed by the recent fixes to resource limits for 32-bit processes
on 64-bit kernels:
- Let ABIs expose their maximum stack size via a new pointer in sysentvec
and use that in preference to maxssiz during exec() rather than always
using maxssiz for all processses.
- Apply the ABI's limit fixup to the previous stack size when adjusting
RLIMIT_STACK to determine if the existing mapping for the stack needs to
be grown or shrunk (as well as how much it should be grown or shrunk).
Approved by: re (kensmith)
same way it was enabled for Linux binares in linuxulator.
This allows binaries built with -pie. Many ports auto-detect -fPIE support
in GCC 4.2 and build binaries FreeBSD was unable to run.
processes under 64-bit kernels). Previously, each 32-bit process overwrote
its resource limits at exec() time. The problem with this approach is that
the new limits affect all child processes of the 32-bit process, including
if the child process forks and execs a 64-bit process. To fix this, don't
ovewrite the resource limits during exec(). Instead, sv_fixlimits() is
now replaced with a different function sv_fixlimit() which asks the ABI to
sanitize a single resource limit. We then use this when querying and
setting resource limits. Thus, if a 32-bit process sets a limit, then
that new limit will be inherited by future children. However, if the
32-bit process doesn't change a limit, then a future 64-bit child will
see the "full" 64-bit limit rather than the 32-bit limit.
MFC is tentative since it will break the ABI of old linux.ko modules (no
other modules are affected).
MFC after: 1 week
with flags bitfield and set BI_CAN_EXEC_DYN flag for all brands that usually
allow executing elf dynamic binaries (aka shared libraries). When it is
requested to execute ET_DYN elf image check if this flag is on after we
know the elf brand allowing execution if so.
PR: kern/87615
Submitted by: Marcin Koziej <creep@desk.pl>
copies arguments into the kernel space and one that operates
completely in the kernel space;
o use kernel-only version of execve(2) to kill another stackgap in
linuxlator/i386.
Obtained from: DragonFlyBSD (partially)
MFC after: 2 weeks
to allow dumping per-thread machine specific notes. On ia64 we use this
function to flush the dirty registers onto the backingstore before we
write out the PRSTATUS notes.
Tested on: alpha, amd64, i386, ia64 & sparc64
Not tested on: arm, powerpc
- struct plimit includes a mutex to protect a reference count. The plimit
structure is treated similarly to struct ucred in that is is always copy
on write, so having a reference to a structure is sufficient to read from
it without needing a further lock.
- The proc lock protects the p_limit pointer and must be held while reading
limits from a process to keep the limit structure from changing out from
under you while reading from it.
- Various global limits that are ints are not protected by a lock since
int writes are atomic on all the archs we support and thus a lock
wouldn't buy us anything.
- All accesses to individual resource limits from a process are abstracted
behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return
either an rlimit, or the current or max individual limit of the specified
resource from a process.
- dosetrlimit() was renamed to kern_setrlimit() to match existing style of
other similar syscall helper functions.
- The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit()
(it didn't used the stackgap when it should have) but uses lim_rlimit()
and kern_setrlimit() instead.
- The svr4 compat no longer uses the stackgap for resource limits calls,
but uses lim_rlimit() and kern_setrlimit() instead.
- The ibcs2 compat no longer uses the stackgap for resource limits. It
also no longer uses the stackgap for accessing sysctl's for the
ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result,
ibcs2_sysconf() no longer needs Giant.
- The p_rlimit macro no longer exists.
Submitted by: mtm (mostly, I only did a few cleanups and catchups)
Tested on: i386
Compiled on: alpha, amd64
The split-up code is derived from the ia64 code originally.
Note that I have only compile-tested this, not actually run-tested it.
The ia64 side of the force is missing some significant chunks of signal
delivery code.
is highly MD in an emulation environment since it operates on the host
environment. Although the setregs functions are really for exec support
rather than signals, they deal with the same sorts of context and include
files. So I put it there rather than create yet another file.